
Tcl Reference Guide

for Tcl 8.4 and 8.5

Tcl/Tk program designed and created by

John Ousterhout <ouster(at)scriptics(dot)com>

Tcl/Tk 8.0 reference guide contents written by

Paul Raines <raines(at)slac(dot)stanford(dot)edu>

Jeff Tranter <tranter(at)pobox(dot)com>

Reference guide format designed and created by

Johan Vromans <jvromans(at)squirrel(dot)nl>

Reference guide reduced to Tcl only and updated to Tcl 8.4 and 8.5 by

Peter Kamphuis <quickref(at)campacasa(dot)eu>

The PDF and LATEX sources of this reference guide can be found at

http://linux.campacasa.eu/Tcl_Reference_Guide

Contents

1. Basic Tcl Language Features 2

2. Tcl Special Variables 2

3. Operators and Expressions 3

4. Regular Expressions 4

5. Pattern Globbing . 4

6. Control Statements . 5

7. File Information . 5

8. Tcl Interpreter Information 7

9. Lists . 8

10. Arrays . 9

11. Dictionaries (8.5) . 10

12. Strings and Binary Data 11

13. System Interaction . 15

14. File Input/Output . 17

15. Channels (8.5) . 18

16. Multiple Interpreters 20

17. Packages . 22

18. Namespaces . 22

19. Other Tcl Commands 23

Tcl Reference Guide Revision 8.5.2

Tcl Reference Guide

Conventions

fixed denotes literal text.

this means variable text, i.e. things you must fill in.

word is a keyword, i.e. a word with a special meaning.

[] denotes an optional part.

. . . denotes a repetition.

Syntax only available with Tcl 8.5 is indicated with “(8.5)”. Syntax not available with Tcl

8.5 anymore is indicated with “(8.4)”. See command(n) manual pages or

http://www.tcl.tk/doc/ for more details on the various Tcl commands.

1. Basic Tcl Language Features

; or newline statement separator

\ statement continuation if last character in line

comments out rest of line (if first non−whitespace character)

var simple variable

var(index) associative array variable

var(i,j) multi-dimensional array variable

$var variable substitution (also ${var}xyz)

[expr 1+2] command substitution

\char backslash substitution (see below)

"hello $a" quoting with substitution

{hello $a} quoting with no substitution (deferred substitution)

The only data type in Tcl is a string. However, some commands will interpret arguments

as numbers/boolean in which case the formats are

Integer: 123 0xff (hex) 0377 (octal)

Floating Point: 2.1 3. 6e4 7.91e+16

Boolean: true false 0 1 yes no

Tcl makes the following backslash substitutions:

\a audible alert (0x7) \space space

\b backspace (0x8) \newline space

\f form feed (0xC) \ddd octal value (d=0-7)

\n newline (0xA) \xhh hexadecimal value (h=0-9, a-f)

\r carriage return (0xD) \uhhhh Unicode character (h=0-9, a-f)

\t horizontal tab (0x9) \c replace ‘\c’ with ‘c’

\v vertical tab (0xB) \\ a backslash

See Tcl(n) manual page for more details.

2. Tcl Special Variables

argc Number of command line arguments.

argv Tcl list of command line arguments.

argv0 Name of script or command interpreter.

env Array where each element name is an enviroment variable.

errorCode Error code information from the last Tcl error.

errorInfo Describes the stack trace of the last Tcl error.

2

Tcl Reference Guide

tcl_interactive Contains 1 when running interactively, 0 otherwise.

tcl_library Location of standard Tcl libraries.

tcl_patchLevel Current patchlevel of Tcl interpreter.

tcl_pkgPath List of directories to search for package loading.

tcl_platform Array with elements byteOrder, debug, machine, os,

osVersion, platform, threaded, user, wordSize,

and pointerSize.

tcl_precision Number of significant digits to retain when converting

floating-point numbers to strings (default 0, meaning using as

few as possible).

tcl_traceCompile Level of tracing info output during bytecode compilation.

tcl_wordchars A regular expression, controlling what are “word” characters.

tcl_nonwordchars A regular expression, controlling what are “non-word”

characters.

tcl_version Current version of Tcl interpreter.

See tclvars(n) manual page for more details.

3. Operators and Expressions

The expr command recognizes the following operators, in decreasing order of

precedence:

- + ˜ ! unary minus, unary plus, bitwise NOT, logical NOT

** exponentiation (8.5)

* / % multiply, divide, remainder

+ - add, subtract

<< >> bitwise shift left, bitwise shift right

< > <= >= boolean comparisons

== != boolean equals, not equals

eq ne boolean string equals, not equals

in ni in list, not in list (8.5)

& bitwise AND
∧ bitwise exclusive OR

| bitwise (inclusive) OR

&& logical AND

|| logical OR

x ? y : z if x != 0, then y, else z

All operators support integers. All support floating point except ˜, %, <<, >>, &, ∧, and |.

Boolean operators can also be used for string operands, in which case string comparison

will be used. This will occur if any of the operands are not valid numbers. The &&, ||,

and ?: operators have “lazy evaluation”, as in C.

Possible operands are numeric values, Tcl variables (with $), strings in double quotes or

braces, Tcl comands in brackets, and the following math functions:

abs ceil exp isqrt (8.5) pow sqrt

acos cos floor log rand srand

asin cosh fmod log10 round tan

atan double hypot max (8.5) sin tanh

atan2 entier (8.5) int min (8.5) sinh wide

bool (8.5)

See expr(n), mathfunc(n) (8.5) and mathop(n) (8.5) manual pages for more details.

3

Tcl Reference Guide

4. Regular Expressions

regex|regex match either expression

regex* match zero or more of regex

regex+ match one or more of regex

regex? match zero or one of regex

regex{m} match regex exactly m times

regex{m,} match regex at least m times

regex{m,n} match regex at least m and at most n times

*? +? ?? {m}? {m,}? {m,n}?

“non-greedy” quantifiers, preferring the smallest instead of the largest

number of matches

. any single character except newline

\d \D match decimal digit, match anything but decimal digit

\s \S match white space, match anything but white space

\w \W match alphanumeric (letter, digit and underscore), match anything but

alphanumeric

\m (where m is a non-zero digit) a back reference

\c match known backslash substitution character or character c even if

special

∧ match beginning of string

$ match end of string

[abc] match set of characters

[∧abc] match characters not in set

[a-z] match range of characters

[∧a-z] match characters not in range

() group expressions, can be used for back references

See re_syntax(n) manual page for more details.

5. Pattern Globbing

? match any single character

* match zero or more characters

[abc] match set of characters

[a-z] match range of characters

\c match character c

{a,b,...} match any of strings a, b, etc.

˜ home directory (for glob command)

˜user match user’s home directory (for glob command)

Note: for the glob command, a “.” at the beginning of a file’s name or just after “/” must

be matched explicitly and all “/” characters must be matched explicitly.

See glob(n) manual page for more details.

4

Tcl Reference Guide

6. Control Statements

break Abort innermost containing loop command.

case Obsolete, see switch.

continue

Skip to the next iteration of innermost containing loop command.

exit [returnCode]

Terminate the process, returning returnCode (an integer which defaults to 0) to

the system as the exit status.

for start test next body

Looping command where start, next, and body are Tcl command strings and test

is an expression string to be passed to expr command.

foreach varname list body

The Tcl command string body is evaluated for each item in the string list where

the variable varname is set to the item’s value.

foreach varlist1 list1 [varlist2 list2 ...] body

Same as above, except during each iteration of the loop, each variable in varlistN

is set to the current value from listN. Empty values are assigned to varlistN if

listN has less elements than other lists.

if expr1 [then] body1 [elseif expr2 [then] body2 ...] [[else] bodyN]

If expression string expr1 evaluates true, Tcl command string body1 is evaluated.

Otherwise if expr2 is true, body2 is evaluated, and so on. If none of the

expressions evaluate to true then bodyN is evaluated.

return [-code code] [-errorinfo info] [-errorcode code] [string]

Return immediately from current procedure with string as return value.

switch [options] [--] string {pattern1 body1 [pattern2 body2 ...] }

The string argument is matched against each of the patternN arguments in order.

The bodyN of the first match found is evaluated. If no match is found and the last

pattern is the keyword default, its bodyN is evaluated. Possible options are

-exact, -glob, -regexp, -nocase (8.5), -matchvar varName (8.5),

and -indexvar varName (8.5).

while test body

Evaluates the Tcl command string body as long as expression string test

evaluates to true.

7. File Information

file atime fileName [time]

Time fileName was last accessed as seconds since January 1, 1970. Set access time

of fileName if time is specified.

file attributes fileName [option [value ...]]

Query or set platform-specific attributes of fileName. Options are for UNIX:

-group, -owner, -permissions; for Windows -archive, -hidden,

-longname, -readonly, -shortname, -system; and for MacOS:

-creator, -hidden, -readonly, -rsrclength (8.5), -type.

file channels [pattern]

Returns list of all registered open channels, optionally matching pattern.

file copy [-force] [--] source [source ...] target

Makes a copy of source under name target. If multiple sources are given, target

must be a directory. Use -force to overwrite existing files.

5

Tcl Reference Guide

file delete [-force] [--] pathName [pathName ...]

Removes given files or directories. Use -force to remove non-empty directories.

file dirname pathName

Returns all directory path components of pathName.

file executable pathName

Returns 1 if pathName is executable by user, 0 otherwise.

file exists pathName

Returns 1 if pathName exists (and user can read its directory), 0 otherwise.

file extension pathName

Returns all characters in pathName after and including the last dot.

file isdirectory pathName

Returns 1 if pathName is a directory, 0 otherwise.

file isfile pathName

Returns 1 if pathName is a regular file, 0 otherwise.

file join name [name ...]

Joins file names using the correct path separator for the current platform.

file link [-symbolic|-hard] linkName [target]

Create a link linkName pointing to target. On UNIX the default is a symbolic link.

file lstat pathName varName

Same as file stat except uses the lstat kernel call.

file mkdir dirName [dirName ...]

Creates given directories.

file mtime fileName [time]

Time fileName was last modified as seconds since January 1, 1970. Set modified

time of fileName if time is specified.

file nativename fileName

Returns the platform-specific name of fileName.

file normalize pathName

Returns a unique absolute, resolved and normalized path representation of

pathName.

file owned pathName

Returns 1 if pathName owned by the current user, 0 otherwise.

file pathtype pathName

Returns one of absolute, relative, or volumerelative.

file readable pathName

Returns 1 if pathName is readable by current user, 0 otherwise.

file readlink pathName

Returns value of symbolic link given by pathName.

file rename [-force] [--] source [source ...] target

Renames file source to target. If target is an existing directory, each source file is

moved there. The -force option forces overwriting of existing files.

file rootname pathName

Returns all the characters in pathName up to but not including last dot.

file separator [pathName]

Returns character used to separate path segments.

file size fileName

Returns size of fileName in bytes.

file split pathName

Returns list whose elements are the path components of pathName.

6

Tcl Reference Guide

file stat pathName varName

Place results of stat kernel call on pathName in variable varName as an array with

elements atime, ctime, dev, gid, ino, mode, mtime, nlink, size, type,

and uid.

file system pathName

Returns list of one or two elements. The first is the name of the filesystem, the

second represents the type if available.

file tail pathName

Return all characters in pathName after last directory separator.

file type pathName

Returns type of pathName. Possible values are file, directory,

characterSpecial, blockSpecial, fifo, link, or socket.

file volumes

Returns just “/” on UNIX, list of local drives on Windows, and list of local and

network drives on MacOS.

file writable pathName

Returns 1 if pathName is writable by current user, 0 otherwise.

8. Tcl Interpreter Information

info args procName

Returns list describing in order the names of arguments to procName.

info body procName

Returns the body of procedure procName.

info cmdcount

Returns the total number of commands that have been invoked.

info commands [pattern]

Returns list of all Tcl commands (built-ins and procs), optionally string matching

pattern.

info complete command

Returns 1 if command is a complete Tcl command, 0 otherwise. Complete means

having no unclosed quotes, braces, brackets or array element names

info default procName arg varName

Returns 1 if procedure procName has a default for argument arg and places the

value in variable varName. Returns 0 if there is no default.

info exists varName

Returns 1 if the variable varName exists in the current context, 0 otherwise.

info frame [number]

Provides access to all frames on the stack. (8.5)

info functions [pattern]

Returns list of all math functions, optionally string matching pattern.

info globals [pattern]

Returns list of global variables, optionally string matching pattern.

info hostname

Returns name of computer on which interpreter was invoked.

info level [number]

Without number returns the stack level of the invoking procedure. Or returns name

and arguments of procedure invoked at stack level number.

info library

Returns name of library directory where standard Tcl scripts are stored.

7

Tcl Reference Guide

info loaded [interp]

Returns list describing packages loaded into interp.

info locals [pattern]

Returns list of local variables, optionally string matching pattern.

info nameofexecutable

Returns full pathname of binary from which the application was invoked.

info patchlevel

Returns current patch level for Tcl.

info procs [pattern]

Returns list of Tcl procedures in current namespace, optionally string matching

pattern.

info script [fileName]

Returns name of Tcl script currently being evaluated. Can be set to fileName for

the duration of the active invocation.

info sharedlibextension

Returns extension used by platform for shared objects.

info tclversion

Returns version number of Tcl in major.minor form.

info vars [pattern]

Returns list of currently-visible variables, optionally string matching glob pattern.

9. Lists

concat [arg arg ...]

Returns concatenation of each list arg as a single list.

join list [joinString]

Returns string created by joining all elements of list with joinString.

lappend varName [value ...]

Appends each value to the end of the list stored in varName.

lassign list varName [varName ...]

Assign list elements to variables varName. Too many varName will be empty, too

few varName will return unassigned elements. (8.5)

lindex list [index ...]

Returns value of element at index in list. Without index returns list. Multiple index

allow to select from sublists.

linsert list index element [element ...]

Returns new list formed by inserting given new elements before element at index in

list.

list [arg ...]

Returns new list formed by using each arg as an element.

llength list

Returns number of elements in list.

lrange list first last

Returns new list from slice of list at indices first through last inclusive.

lrepeat number element1 [element2 ...]

Returns new list consisting of number times the sequence of elementN. (8.5)

lreplace list first last [element ...]

Returns new list formed by replacing elements first through last in list with given

elements.

8

Tcl Reference Guide

lreverse list

Returns new list consisting of elements of list in reverse order. (8.5)

lsearch [mode] list pattern

Returns index of first element in list that matches pattern (-1 for no match). Mode

may be -exact, -glob (default), -regexp, or -sorted. See lsearch(n)

manual page for more options.

lset varName [index ...] newValue

Replaces an element at index in the list stored in varName with newValue. Multiple

index allow to assign to sublists. Without index replaces the old value of varName.

lsort [switches] list

Returns new list formed by sorting list according to switches. These are

-ascii string comparison (default)

-dictionary like -ascii but ignores case and is number smart.

-integer integer comparison

-real floating-point comparison

-command cmd use cmd which takes two arguments and returns an integer

less than, equal to, or greater than zero

-increasing sort in increasing order (default)

-decreasing sort in decreasing order

-indices return a list of indices into list in sorted order instead of the

values themselves. (8.5)

-index ix treats each elements as a sub-list and sorts on the ixth

element

-nocase compare in case-insensitive manner. (8.5)

-unique uniquify the sorted list.

split string [splitChars]

Returns a list formed by splitting string at each character in splitChars

(white-space by default).

Note: list indices start at 0 and the word end may be used to reference the last element in

the list. Computations in the form end-N are possible.

10. Arrays

array anymore arrayName searchId

Returns 1 if anymore elements are left to be processed in array search searchId on

arrayName, 0 otherwise.

array donesearch arrayName searchId

Terminates the array search searchId on arrayName.

array exists arrayName

Returns 1 if arrayName is an array variable, 0 otherwise.

array get arrayName [pattern]

Returns a list where each odd element is an element name and the following even

element its corresponding value. Optionally returning only for array elements that

string match pattern.

array names arrayName [mode] [pattern]

Returns list of all element names in arrayName, optionally string matching

pattern. Mode may be -exact, -glob (default), or -regexp.

array nextelement arrayName searchId

Returns name of next element in arrayName for the search searchId.

9

Tcl Reference Guide

array set arrayName list

Sets values of elements in arrayName for list in array get format.

array size arrayName

Return number of elements in arrayName.

array startsearch arrayName

Returns a search id to use for an element-by-element search of arrayName.

array statistics arrayName

Returns statistics about the distribution of data within the hashtable that represents

the array.

array unset arrayName [pattern]

Unsets all elements in the array arrayName, optionally string matching pattern.

parray arrayName

Print to standard output the names and values of all element names in arrayName.

11. Dictionaries (8.5)

Dictionaries are values that contain an efficient, order-preserving mapping from arbitrary

keys to arbitrary values. Each key in the dictionary maps to a single value. They have a

textual format that is exactly that of any list with an even number of elements, with each

mapping in the dictionary being represented as two items in the list.

dict append dictVariable key [string ...]

Append the given string(s) to the value that the given key maps to in the dictionary

value contained in the given variable, writing the resulting dictionary value back to

that variable.

dict create [key value ...]

Create a new dictionary that contains each of the key/value mappings listed as

arguments.

dict exists dictValue key [key ...]

Return a boolean value indicating whether the given key exists in the given

dictionary value.

dict filter dictValue filterType arg [arg ...]

Return a new dictionary that contains just those key/value pairs that match the

specified filter type on the given dictionary value. Supported filter types are:

dict filter dictValue key globPattern

Match only those key/value pairs whose keys match the given globPattern

(like string match).

dict filter dictValue script {keyVar valueVar} script

Evaluate the given script (returning a boolean value) for each key/value pair

(assigned to the given keyVar and valueVar variables). Match only those

key/value pairs for which the script returns true. The script can return with a

condition of TCL_BREAK or TCL_CONTINUE accordingly.

dict filter dictValue value globPattern

Match only those key/value pairs whose values match the given globPattern

(like string match).

dict for {keyVar valueVar} dictValue body

Iterate over the given dictionary value, setting the keyVar and valueVar variables

for each key/value pair, and evaluate the given script (like foreach). The given

script can generate a TCL_BREAK or TCL_CONTINUE result accordingly.

dict get dictValue [key ...]

Get the value of the given key in the given dictionary value. Multiple keys allow

10

Tcl Reference Guide

getting values in nested dictionaries. If no keys are given, return a list containing

key/value pairs (like array get).

dict incr dictVariable key [increment]

Add the given increment value (default 1) to the value that the given key maps to in

the dictionary value contained in the given variable, writing the resulting dictionary

value back to that variable. Non-existent keys are treated as if they map to 0.

dict info dictValue

Return information about the given dictionary value.

dict keys dictValue [globPattern]

Return a list of all keys in the given dictionary value, optionally only those keys

matching globPattern (like string match).

dict lappend dictVariable key [value ...]

Append the given items to the list value that the given key maps to in the dictionary

value contained in the given variable, writing the resulting dictionary value back to

that variable. Non-existent keys are treated as if they map to an empty list.

dict merge [dictValue ...]

Return a dictionary that contains the contents of each of the dictValue arguments.

dict remove dictValue [key ...]

Return a new dictionary that is a copy of the given dictionary value, with the

mappings for each key listed removed.

dict replace dictValue [key value ...]

Return a new dictionary that is a copy of the given dictionary value, replacing or

adding the given key/value pairs.

dict set dictVariable key [key ...] value

Update the dictionary value contained in the given variable by mapping the given

key to the given value. Multiple keys allow setting values in nested dictionaries.

dict size dictValue

Return the number of key/value mappings in the given dictionary value.

dict unset dictVariable key [key ...]

Update the dictionary value contained in the given variable to not contain a

mapping for the given key. Multiple keys allow removing mappings in nested

dictionaries.

dict update dictVariable key varName [key varName ...] body

Execute the Tcl script in body with the value for each key (of the dictionary value

in the given variable) mapped to the variable varName. Changes made to the

varName variable(s) are reflected back to the given dictionary.

dict values dictValue [globPattern]

Return a list of all values in the given dictionary value, optionally only those values

matching globPattern (like string match).

dict with dictVariable [key ...] body

Execute the Tcl script in body with the value for each key (of the dictionary value

in the given variable) mapped to a variable with the same name. Multiple keys

allow nested dictionaries.

12. Strings and Binary Data

append varName [value ...]

Appends each of the given values to the string stored in varName.

binary format formatString [arg ...]

Returns a binary string representation of args composed according to formatString,

11

Tcl Reference Guide

a sequence of zero or more field codes each followed by an optional integer count

or *. The possible field codes are:

a chars (null padding) w 64-bit int (little-endian)

A chars (space padding) W 64-bit int (big-endian)

b binary (low-to-high) m as w|W, but native byte order (8.5)

B binary (high-to-low) f float

h hex (low-to-high) r float (little-endian) (8.5)

H hex (high-to-low) R float (big-endian) (8.5)

c 8-bit int d double

s 16-bit int (little-endian) q double (little-endian) (8.5)

S 16-bit int (big-endian) Q double (big-endian) (8.5)

t as s|S, but native byte order (8.5) x nulls

i 32-bit int (little-endian) X backspace

I 32-bit int (big-endian) @ absolute position

n as i|I, but native byte order (8.5)

binary scan string formatString [varName ...]

Extracts values into varName’s from binary string according to formatString.

Returns the number of values extracted. Field codes are the same as for binary

format, except for:

a chars (no stripping) A chars (stripping) x skip forward

encoding convertfrom [encoding] data

Returns data converted to Unicode from the specified encoding as string.

encoding convertto [encoding] string

Returns string converted from Unicode to the specified encoding as a sequence of

bytes.

encoding dirs [directoryList]

Sets search path for additional encoding data files, or returns list of directories in

search path if directoryList is omitted. (8.5)

encoding names

Returns list of available encodings.

encoding system [encoding]

Sets the system encoding, or returns the current system encoding if encoding is

omitted.

format formatString [arg ...]

Returns a formatted string generated in the ANSI C sprintf-like manner.

Placeholders have the form %[argpos$][flag][width][.prec][h|l]char where

argpos, width, and prec are integers and possible values for char are:

d signed decimal X unsigned HEX E float (0E0)

u unsigned decimal c int to char g auto float (f or e)

i signed decimal s string G auto float (f or E)

o unsigned octal f float (fixed) % plain %

x unsigned hex e float (0e0)

and possible values for flag are:

- left-justified 0 zero padding # alternate output

+ always signed space space padding

regexp [switches] exp string [matchVar] [subMatchVar ...]

Returns 1 if the regular expression exp matches part or all of string, 0 otherwise. If

specified, matchVar will be set to all the characters in the match and the following

subMatchVar’s will be set to matched parenthesized subexpressions.

The -nocase switch can be specified to ignore case in matching. The

-indices switch can be specified so that subMatchVar will be set to a list

12

Tcl Reference Guide

containing the start and ending indices in string of the corresponding match. See

regexp(n) manual page for more switches.

regsub [switches] exp string subSpec [varName]

Replaces the first portion of string that matches the regular expression exp with

subSpec. If varName is specified, it will contain the result and the number of

replacements made is returned. If varName is not specified, the result is returned.

The -nocase switch can be specified to ignore case in matching. The -all

switch will cause all matches to be substituted for. See regsub(n) manual page for

more switches.

scan string formatString [varName ...]

Extracts values into given variables using ANSI C sscanf behavior. Returns the

number of values extracted. If no varName is specified, returns a list with the

extracted data.

Placeholders have the form %[argpos$][*][width][h|l|L|ll]char where * is for

discard, argpos, and width are integers and possible values for char are:

d decimal integer u decimal (unsigned) [chars] chars in given range

o octal integer c char to int [∧chars] chars not in range

x hex integer s string (non-blank) n no input scanned

i any integer e,f,g float

string bytelength string

Returns the number of bytes used to represent string in memory.

string compare [-nocase] [-length int] string1 string2

Returns -1, 0, or 1, depending on whether string1 is lexicographically less than,

equal to, or greater than string2. Optionally comparing in case-insensitive manner

or only comparing the first int characters.

string equal [-nocase] [-length int] string1 string2

Returns 1 if string1 and string2 are identical, or 0 when not. Optionally comparing

in case-insensitive manner or only comparing the first int characters.

string first string1 string2 [startIndex]

Returns index in string2 of first occurance of string1 (-1 if not found). Optionally

at or after index startIndex.

string index string charIndex

Returns the charIndex’th character in string.

string is class [-strict] [-failindex varName] string

Returns 1 if string is a valid member of the specified character class, or 0 when

not. See string(n) manual page for more information.

string last string1 string2 [lastIndex]

Returns index in string2 of last occurance of string1 (-1 if not found). Optionally at

or before index lastIndex.

string length string

Returns the number of characters in string.

string map [-nocase] mapping string

Replaces substrings in string based on the list of key-value pairs in mapping and

return the result. Iteration over string is only done once, any key appearing first

will be replaced first. Optionally comparing in case-insensitive manner.

string match [-nocase] pattern string

Returns 1 if glob pattern matches string, 0 otherwise. Optionally comparing in

case-insensitive manner.

string range string first last

Returns characters from string at indices first through last inclusive.

13

Tcl Reference Guide

string repeat string count

Returns string repeated count number of times.

string replace string first last [newString]

Removes characters from string at indices first through last inclusive, and returns

the result. If newString is specified, it replaces the removed characters.

string reverse string

Returns string with its characters in reverse order. (8.5)

string tolower string [first] [last]

Returns new string formed by converting all characters in string to lower case.

Optionally only converting from index first to index last.

string totitle string [first] [last]

Returns new strings formed by converting the first character in string to title case

(upper case), and all further characters to lower case. Optionally only converting

from index first to index last.

string toupper string [first] [last]

Returns new string formed by converting all characters in string to upper case.

Optionally only converting from index first to index last.

string trim string [chars]

Returns new string formed by removing from string any leading or trailing

characters present in the set chars (defaults to white space).

string trimleft string [chars]

Same as string trim for leading characters only.

string trimright string [chars]

Same as string trim for trailing characters only.

string wordend string charIndex

Returns index of character just after last one in word at charIndex in string.

string wordstart string charIndex

Returns index of first character of word at charIndex in string.

subst [-nobackslashes] [-nocommands] [-novariables] string

Returns result of backslash, command, and variable substitutions on string. Each

may be turned off by switch.

tcl_endOfWord string charIndex

Returns the index of the first end-of-word location after charIndex in string (-1 if

not found).

tcl_startOfNextWord string charIndex

Returns the index of the first start-of-word location after charIndex in string (-1 if

not found).

tcl_startOfPreviousWord string charIndex

Returns the index of the first start-of-word location before charIndex in string (-1 if

not found).

tcl_wordBreakAfter string charIndex

Returns the index of the first word boundary after charIndex in string (-1 if not

found).

tcl_wordBreakBefore string charIndex

Returns the index of the first word boundary before charIndex in string (-1 if not

found).

Note: string indices start at 0 and the word end may be used to reference the last

character in the string. Computations in the form end-N are possible.

14

Tcl Reference Guide

13. System Interaction

cd [dirName]

Change working directory to dirName.

clock add timeVal [count unit...] [option value]

Adds an offset to a time timeVal expressed as an integer number of seconds. As

unit one of the words seconds, minutes, hours, days, weeks, months, or

years, or any unique prefix of such word can be used. (8.5)

clock clicks [resolution]

Returns hi-res system-dependent integer time value. If resolution is

-milliseconds, the value is guaranteed to be of millisecond granularity

(obsolete in 8.5, use clock milliseconds instead). A resolution

-microseconds (8.5) is synonymous with clock microseconds and is

obsolete. Use clock microseconds instead.

clock format timeVal [option value]

Convert integer timeVal, as seconds since 1 January 1970, 00:00 UTC, to

human-readable format. The option -format format recognizes the following

placeholders (names as for the given locale):

%a weekday (abbr) %n newline (8.4)

%A weekday (full) %N month (1 – 12) (8.5)

%b month (abbr) %Od,%Oe,%OH,%OI,%Ok,%Ol,%Om,

%B month (full) %OM,%OS,%Ou,%Ow,%Oy

%c locale date & time locale as without “O” (8.5)

%C century %p locale AM/PM

%d day (01 – 31) %P locale am/pm (8.5)

%D %m/%d/%Y %Q internal use (8.5)

%e day (1 – 31) %r locale 12hr time

%Ec locale date & time (8.5) %R locale 24hr time

%EC locale era (8.5) %s timeVal

%EE B.C.E or C.E. (8.5) %S seconds (00 – 59)

%Ex locale alternate date (8.5) %t TAB

%EX locale alternate time (8.5) %T %H:%M:%S

%Ey locale alternate year (00 – 99) (8.5) %u weekday (1 – 7)

%EY locale alternate year (full) (8.5) %U week (00 – 53)

%g ISO8601 year (00 – 99) %V ISO8601 week (01 – 53)

%G ISO8601 year (full) %w weekday (0 – 6)

%h month (abbr) %W week (00 – 53)

%H hour (00 – 23) %x locale date

%I hour (01 – 12) %X locale time

%j day (001 – 366) %y year (00 – 99)

%J Julian day (8.5) %Y year (full)

%k hour (0 – 23) %z time zone (±hhmm) (8.5)

%l hour (1 – 12) %Z time zone name

%m month (01 – 12) %% %

%M minute (00 – 59) %+ “%a %b %e %T %Z %Y” (8.5)

The default format is “%a %b %d %T %Z %Y” (“%a %b %d %T %z %Y” in 8.5).

clock microseconds

Returns the current time as an integer number of microseconds. (8.5)

clock milliseconds

Returns the current time as an integer number of milliseconds. (8.5)

clock scan dateString [-base timeVal] [option value]

15

Tcl Reference Guide

Convert dateString to an integer clock value. If dateString contains a 24 hour time

only, the date given by timeVal is used.

clock seconds

Returns the current time as an integer number of seconds.

Note: for clock arithmetic, formatting, and scanning -gmt boolean specifies that a time

should be processed in UTC, or defaults to the local time zone (obsolete in 8.5,

-timezone should be used instead). -locale localeName (8.5) specifies that

locale-dependent processing is to be done. -timezone zoneName (8.5) specifies that

processing is to be done for the given time zone.

exec [-ignorestderr] [-keepnewline] [--] arg [arg ...]

Execute subprocess using each arg as word for a shell pipeline and return results

written to standard out, optionally retaining the final newline char. With

-ignorestderr (8.5) output to standard error will not be treated as error. The

following constructs can be used to control I/O flow.

| pipe (stdout)

|& pipe (stdout and stderr)

<fileName stdin from file

<@ fileId stdin from open file

<<value pass value to stdin

>fileName stdout to file

2>fileName stderr to file

>& fileName stdout and stderr to file

>>fileName append stdout to file

2>>fileName append stderr to file

>>& fileName append stdout and stderr to file

>@ fileId stdout to open file

2>@ fileId stderr to open file

2>@1 redirect stderr to stdout (8.5)

>&@ fileId stdout and stderr to open file

& run in background

glob [switches] [--] pattern [pattern ...]

Returns list of all files in current directory that match any of the given csh-style

glob patterns. The following switches are supported.

-directory directory

Search for files within the given directory

-join Treat all pattern joined with directory separators as single

pattern

-nocomplain Allow empty result without error

-path pathPrefix Search for files with given pathPrefix

-tails Only return file tail of each file found in any -directory

or -path specification

-types typeList Only return files or directories of certain type. The

following types will be ORed: b (block special file), c

(character special file), d (directory), f (plain file), l

(symbolic link), p (named pipe), or s (socket). The

following (UNIX) types will be ANDed: r (readable), w

(writable), and x (executable).

16

Tcl Reference Guide

pid [fileId]

Return process id of process pipeline fileId if given, otherwise return process id of

interpreter process.

pwd Returns the absolute path name of the current working directory.

14. File Input/Output

close channelId

Close the open file channel channelId.

eof channelId

Returns 1 if an end-of-file has occurred on channelId, 0 otherwise.

fblocked channelId

Returns 1 if last read from channelId exhausted all available input.

fconfigure channelId [option [value [option value ...]]]

Sets or gets options for I/O channel channelId. Options are:

-blocking boolean Whether I/O can block process.

-buffering full|line|none How to buffer output.

-buffersize byteSize

Size of buffer. Minimum value is 10, maximum value is 1 million.

-encoding encoding

Encoding of the channel. Allows to convert to and from Unicode for use in

Tcl. Use the encoding binary for reading and writing binary files.

-eofchar char | {inChar outChar}

Sets character to serve as end-of-file marker.

-translation mode | {inMode outMode}

Sets how to translate end-of-line markers. Modes are auto, binary, cr,

crlf, and lf.

For socket channels (read-only settings):

-error

Get the current error status of the socket.

-sockname

Returns three element list with address, host name and port number.

-peername

For client and accepted sockets, three element list of peer socket.

See open(n) manual page for details on fconfigure options for serial device

channels.

fcopy inId outId [-size size] [-command callback]

Copy data from inId to outId until eof or size bytes have been transferred. If

-command is given, copy occurs in background and runs callback when finished,

appending number of bytes copied and possible error message as arguments.

fileevent channelId readable|writable [script]

Evaluate script when channel channelId becomes readable/writable.

flush channelId

Flushes any output that has been buffered for channelId.

gets channelId [varName]

Read next line from channel channelId, discarding newline character. If varName

is not given, returns the characters read. If varName is given, places the characters

read in it and returns the number of characters read.

17

Tcl Reference Guide

open fileName [access [perms]]

Opens filename and returns its channel id. If a new file is created, its permission are

set to the conjuction of perms (defaulting to 0666) and the process umask. The

access may be

r Read only. File must exist. Default if access is not given.

r+ Read and write. File must exist.

w Write only. Truncate if exists.

w+ Read and write. Truncate if exists.

a Write only. Create new empty file if not existing yet. Access position at end.

a+ Read and write. Create new empty file if not existing yet. Access position at

end.

puts [-nonewline] [channelId] string

Write string to channelId (default stdout), optionally omitting newline char.

read [-nonewline] channelId

Read all remaining bytes from channelId, optionally discarding last character if it

is a newline.

read channelId numBytes

Read numBytes bytes from channelId.

seek channelId offset [origin]

Change current access position on channelId to offset bytes from origin which may

be start (default), current, or end.

socket [option ...] host port

Open a client-side TCP socket to server host on port and returns its channel

identifier. Options are:

-myaddr addr Set network address of client (if multiple available).

-myport port Set connection port of client (if different from server).

-async Make connection asynchronous.

socket -server command [-myaddr addr] port

Open server TCP socket on port invoking command once connected with three

arguments: the channel, the address, and the port number.

tell channelId

Return current access position in channelId.

15. Channels (8.5)

The chan command provides a unified way to read, write and manipulate channels that

have been created with the open or socket commands, or the default named channels

stdin, stdout or stderr. Several operations are also available using a mix of “old”

commands (see File Input/Output above).

chan blocked channelId

Returns 1 if the last input operation on channel channelId failed because it would

have otherwise caused the process to block, 0 otherwise.

chan close channelId

Close and destroy channel channelId.

chan configure channelId [option [value [option value ...]]]

Sets or gets options for channel channelId. Options are:

-blocking boolean Whether I/O can block process.

-buffering full|line|none How to buffer output.

18

Tcl Reference Guide

-buffersize byteSize

Size of buffer. Maximum value is 1 million.

-encoding encoding

Encoding of the channel. Allows to convert to and from Unicode for use in

Tcl. Use the encoding binary for reading and writing binary files.

-eofchar char | {inChar outChar}

Sets character to serve as end-of-file marker.

-translation mode | {inMode outMode}

Sets how to translate end-of-line markers. Modes are auto, binary, cr,

crlf, and lf.

For socket channels (read-only settings):

-error

Get the current error status of the socket.

-sockname

Returns three element list with address, host name and port number.

-peername

For client and accepted sockets, three element list of peer socket.

See open(n) manual page for details on chan configure options for serial device

channels.

chan copy inputChan outputChan [-size size] [-command callback]

Copy data from the channel inputChan to channel outputChan until eof or size

bytes have been transferred. If -command is given, copy occurs in background

and runs callback when finished, appending number of bytes copied and possible

error message as arguments.

chan create mode cmdPrefix

Create a new script level channel using the command prefix cmdPrefix as its

handler. The argument mode must be a list containing any of the strings read or

write and specifies how the channel is opened. This channel is called a reflected

channel. See refchan(n) manual page for more details.

chan eof channelId

Returns 1 if an end-of-file has occurred on channel channelId, 0 otherwise.

chan event channelId event [script]

Arrange for the Tcl script script to be installed as a file event handler to be called

whenever channel channelId enters the state described by event (which must be

either readable or writable). Specify an empty string as script to delete the

current handler. Without script returns the currently installed script.

chan flush channelId

Flushes any output that has been buffered for channel channelId.

chan gets channelId [varName]

Read next line from channel channelId, discarding newline character. If varName

is not given, returns the characters read. If varName is given, places the characters

read in it and returns the number of characters read.

chan names [pattern]

Returns a list of all channel names, optionally only those matching pattern (like

string match).

chan pending mode channelId

Depending on whether mode is input or output, returns the number of bytes of

input or output currently buffered internally for channel channelId.

chan postevent channelId eventSpec

This subcommand is used by command handlers specified with chan create. It

19

Tcl Reference Guide

notifies the channel represented by the handle channelId that the event(s) listed in

the eventSpec have occurred. The argument has to be a list containing any of the

strings read and write. See refchan(n) manual page for more details.

chan puts [-nonewline] [channelId] string

Write string to channel channelId (default stdout), optionally omitting newline

char.

chan read channelId [numChars]

Read numBytes characters from channel channelId.

chan read [-nonewline] channelId

Read all remaining bytes from channel channelId, optionally discarding last

character if it is a newline.

chan seek channelId offset [origin]

Change current access position on channel channelId to offset bytes from origin

which may be start (default), current, or end.

chan tell channelId

Return current access position in channel channelId.

chan truncate channelId [length]

Sets the byte length of the underlying data stream for channel channelId to be

length (or to the current byte offset if length is omitted).

16. Multiple Interpreters

interp alias srcPath srcCmd

Returns list whose elements are the targetCmd and args associated with the alias

srcCmd in interpreter srcPath.

interp alias srcPath srcCmd {}

Deletes the alias srcCmd in interpreter srcPath.

interp alias srcPath srcCmd targetPath targetCmd [arg ...]

Creates an alias srcCmd in interpreter srcPath which when invoked will run

targetCmd and args in the interpreter targetPath.

interp aliases [path]

Returns list of all aliases defined in interpreter path.

interp bgerror path [cmdPrefix]

Get or set the current background error handler for interpreter path. (8.5)

interp create [-safe] [--] [path]

Creates a slave interpreter (optionally safe) named path.

interp debug path [-frame [bool]]

Controls whether to capture frame-level stack information in slave interpreter path.

(8.5)

interp delete path [path ...]

Deletes the interpreter(s) path and all its slave interpreters.

interp eval path arg [arg ...]

Evalutes concatenation of args as command in interpreter path.

interp exists path

Returns 1 if interpreter path exists, 0 otherwise.

interp expose path hiddenCmd [exposedCmd]

Make hiddenCmd in interpreter path exposed (optionally as exposedCmd).

interp hide path exposedCmd [hiddenCmd]

Make exposedCmd in interpreter path hidden (optionally as hiddenCmd).

20

Tcl Reference Guide

interp hidden path

Returns list of hidden commands in interpreter path.

interp invokehidden path [option ...] hiddenCmd [arg ...]

Invokes hiddenCmd with specified args in interpreter path. Options are:

-global Invoke at global level.

-namespace name Invoke in namespace name. (8.5)

-- Allows hiddenCmd to start with -. (8.5)

interp issafe [path]

Returns 1 if interpreter path is safe, 0 otherwise.

interp limit path limitType [-option] [value ...]

Sets up, manipulates and queries the configuration of resource limit limitType for

interpreter path. (8.5)

interp marktrusted [path]

Marks interpreter path as trusted.

interp recursionlimit path [newLimit]

Returns the maximum allowable nesting depth for interpreter path, optionally

setting a new limit.

interp share srcPath channelId destPath

Arranges for I/O channel channelId in interpreter srcPath to be shared with

interpreter destPath.

interp slaves [path]

Returns list of names of all slave interpreters of interpreter path.

interp target path alias

Returns Tcl list describing target interpreter of alias in interpreter path.

interp transfer srcPath channelId destPath

Moves I/O channel channelId from interpreter srcPath to destPath.

For each slave interpreter created, a new Tcl command is created by the same name in its

master. This command has the alias, aliases, bgerror (8.5), eval, expose, hide, hidden,

invokehidden, issafe, limit (8.5), marktrusted, and recursionlimit subcommands like

interp, but without the srcPath and path arguments (they default to the slave itself) and

without the targetPath argument (it defaults to the slave’s master).

A safe interpreter is created with the following commands exposed:

after error info lsort split
append eval interp namespace string
apply (8.5) expr join package subst
array fblocked lappend pid switch
binary fcopy lassign (8.5) proc tell
break fileevent lindex puts time
catch flush linsert read trace
chan (8.5) for list regexp unset
clock foreach llength regsub update
close format lrange rename uplevel
concat gets lrepeat (8.5) return upvar
continue global lreplace scan variable
dict (8.5) if lsearch seek vwait
eof incr lset (8.5) set while

A safe interpreter is created with the following commands hidden:

cd exit glob pwd source
encoding fconfigure load socket unload
exec file open

21

Tcl Reference Guide

17. Packages

package forget package

Remove all info about package from interpreter.

package ifneeded package version [script]

Tells interpreter that if version version of package, evaluating script will provide it.

package names

Returns list of all packages in the interpreter that are currently provided or have an

ifneeded script available.

package prefer [latest|stable]

Return or set the package require selection logic mode. (8.5)

package present [-exact] package [requirement]

Equivalent to package require, but does not try and load package if not already

loaded.

package provide package [version]

Tells interpreter that package version is now provided. Without version, the

currently provided version of package is returned.

package require package [requirement...]

Tells interpreter that a suitable package must be provided. A suitable package must

satisfy at least one of the requirements as per package vsatisfies rules. The

version number of the package loaded is returned. (8.5)

package require [-exact] package [version]

Tells interpreter that package (with the exact version) must be provided.

package unknown [command]

Specifies a last resort Tcl command to provide a package, appending the desired

package and version or requirements.

package vcompare version1 version2

Returns -1 if version1 is earlier than version2, 0 if equal, and 1 if later.

package versions package

Returns list of all versions numbers of package with an ifneeded script.

package vsatisfies version requirement...

Returns 1 if version satisfies at least one of requirements, 0 otherwise.

Requirements are in the form (where min and max are valid version numbers,

8.5):

min Min-bounded.

min- Min-unbound.

min-max Bounded.

package vsatisfies version1 version2

Returns 1 if version2 scripts will work unchanged under version1, 0 otherwise.

18. Namespaces

namespace children [namespace] [pattern]

Returns list of child namespaces belonging to namespace (defaults to current)

which match pattern (default *).

namespace code script

Returns new script string which when evaluated arranges for script to be evaluated

in current namespace. Useful for callbacks.

namespace current

Returns fully-qualified name of current namespace.

22

Tcl Reference Guide

namespace delete [namespace ...]

Each given namespace is deleted along with their child namespaces, procedures,

and variables.

namespace ensemble subcommand [arg ...]

Creates and manipulates a command that is formed out of an ensemble of

subcommands. (8.5)

namespace eval namespace arg [arg ...]

Activates namespace and evaluates concatenation of args’s inside it.

namespace exists namespace

Returns 1 if namespace is valid in the current context, 0 otherwise.

namespace export [-clear] [pattern ...]

Adds to export list of current namespace all commands that match given pattern’s.

If -clear is given, the export list is first emptied.

namespace forget [namespace::pattern ...]

Removes from current namespace any previously imported commands from

namespace that match pattern.

namespace import [-force] [namespace::pattern ...]

Imports into current namespace commands matching pattern from namespace. The

-force option allows replacing of existing commands.

namespace inscope namespace listArg [arg ...]

Activates namespace (which must already exist) and evaluates inside it the result of

lappend of arg’s to listArg.

namespace origin command

Returns fully-qualified name of imported command.

namespace parent [namespace]

Returns fully-qualified name of parent namespace of namespace.

namespace path [namespaceList]

Returns or sets the command resolution path of the current namespace. (8.5)

namespace qualifiers string

Returns any leading namespace qualifiers in string.

namespace tail string

Returns the simple name (strips namespace qualifiers) in string.

namespace upvar namespace otherVar myVar [otherVar myVar ...]

Arrange for one or more local variables in the current procedure to refer to

variables in namespace. (8.5)

namespace unknown [script]

Sets or returns the unknown command handler for the current namespace. (8.5)

namespace which [-command|-variable] name

Returns fully-qualified name of the command (or as variable, if -variable

given) name in the current namespace. Will look in global namespace if not in

current namespace.

variable [name value ...] name [value]

Creates one or more variables in current namespace (if name is unqualified)

initialized to optionally given values. Inside a procedure and outside a namespace

eval, a local variable is created linked to the given namespace variable.

19. Other Tcl Commands

after ms [arg1 arg2 arg3 ...]

Arrange for command (concat of args) to be run after ms milliseconds have passed.

23

Tcl Reference Guide

With no args, program will sleep for ms milliseconds. Returns the id of the event

handler created.

after cancel id|arg1 arg2 ...

Cancel previous after command either by command or the id returned.

after idle [arg1 arg2 arg3 ...]

Arrange for command (concat of args) to be run later when there are no events to

process in the (Tk) event loop. Returns the id of the event handler created.

after info [id]

Returns information on event handler id. With no id, returns a list of all existing

event handler ids.

apply function [arg ...]

Apply function to the given arguments and return the result. (8.5)

auto_execok command

Returns a list of arguments to be passed to exec if an executable file or shell builtin

by the name command exists in user’s PATH, empty string otherwise.

auto_import pattern

Invoked during namespace import to see if imported commands specified by

pattern reside in an autoloaded library.

auto_load command

Attempts to load definition for command by searching $auto_path and

$env(TCLLIBPATH) for a tclIndex file which will inform the interpreter where

it can find command’s definition.

auto_mkindex directory pattern [pattern ...]

Generate a tclIndex file from all files in directory that match glob patterns.

auto_qualify command namespace

Compute a list of fully qualified names for command.

auto_reset

Destroys cached information used by auto_execok and auto_load.

bgerror message

User defined handler for background Tcl errors. (Preferrably use interp bgerror in

8.5.)

catch script [resultVarName] [optionsVarName]

Evaluate script and optionally store results into resultVarName. Optionally store a

directory of return options into optionsVarName (8.5). If there is an error, a

non-zero error code is returned and an error message stored in resultVarName.

dde command args

Execute a Dynamic Data Exchange (DDE) command when running under

Microsoft Windows. See dde(n) manual page for more details.

error message [info] [code]

Interrupt command interpretation with an error described in message. Global

variables errorInfo and errorCode will be set to info and code.

eval arg [arg ...]

Returns result of evaluating the concatenation of args’s as a Tcl command.

expr arg [arg ...]

Returns result of evaluating the concatenation of arg’s as an operator expression.

See Operators and Expressions for more info.

global varName [varName ...]

Declares given varName’s as global variables.

history command [args]

Manipulate the command history list. See history(n) manual page for more details.

24

Tcl Reference Guide

incr varName [increment]

Increment the integer value stored in varName by increment (default 1). If

varName is unset, set it to increment or to 1 by default (8.5).

load file [pkgName [interp]]

Load binary code for pkgName from file (dynamic lib) into interp.

memory command [args]

Control Tcl memory debugging capabilities. See memory(n) manual page for

more details.

::msgcat::command [args]

The msgcat package provides a set of functions that can be used to manage

multi-lingual user interfaces using an application independent “message catalog”.

See msgcat(n) manual page for more details.

::pkg::create -name pkgName -version pkgVersion [-load filespec ...] [-source filespec ...]

Create an appropriate package ifneeded command for a given package

specification. At least one -load or -source parameter must be given.

pkg_mkIndex [-direct] [-lazy] [-load pkgPat] [-verbose] dir [pattern ...]

Create index files that allow packages to be loaded automatically when package

require commands are executed.

platform::command [arg]

The platform package provides several utility commands useful for the

identification of the architecture of a machine running Tcl. See platform(n)

manual page for more details. (8.5)

platform::shell::command shell

The platform:shell package provides several utility commands useful for the

identification of the architecture of a specific Tcl shell. See platform::shell(n)

manual page for more details. (8.5)

proc name args body

Create a new Tcl procedure (or replace existing one) called name where args is a

list of arguments and body Tcl commands to evaluate when invoked. If the last

argument has the name args, then this will be a list containing the values of any

remaining arguments when invoked.

registry command args

Manipulate the Microsoft Windows registry. See registry(n) manual page for more

details.

rename oldName newName

Rename command oldName so it is now called newName. If newName is the

empty string, command oldName is deleted.

set varName [value]

Store value in varName if given. Returns the current value of varName.

source [-encoding encoding] fileName

Read file fileName and evaluate its contents as a Tcl script. The encoding of

fileName can be specified (8.5).

::tcl::tm::command args

Facilities for locating and loading of Tcl Modules. See tm(n) manual page for

more details. (8.5)

tcltest::command args

The tcltest package provides several utility commands useful in the construction

of test suites for code instrumented to be run by evaluation of Tcl commands. See

tcltest(n) manual page for more details.

tcl_findLibrary basename version patch initScript enVarName varName

A standard search procedure for use by extensions during their initialization.

25

Tcl Reference Guide

time script [count]

Call interpreter count (default 1) times to evaluate script. Returns string of the form

“503 microseconds per iteration”.

trace add|remove|info type name [ops commandPrefix [args...]]

Add, remove or provide information on monitoring of operations specified with

type (and further arguments): command for command renaming or deletion,

execution for command execution, and variable for variable access. See

trace(n) manual page for more details.

unknown cmdName [arg ...]

Called when the Tcl interpreter encounters an undefined command name.

unload [-nocomplain] [-keeplibrary] [--] file [pkgName [interp]]

Try to unload shared libraries previously loaded with load. (8.5)

unset [-nocomplain] [--] name [name ...]

Removes the given variables, arrays and array elements from scope. Possible errors

can be suppressed with -nocomplain.

update [idletasks]

Handle pending (Tk) events. If idletasks is specified, only those operations

normally deferred until the idle state are processed.

uplevel [level] arg [arg ...]

Evaluates concatenation of arg’s in the variable context indicated by level, an

integer (defaulting to 1) that gives the distance up the calling stack. If level is

preceded by “#”, then it gives the distance down the calling stack from the global

level.

upvar [level] otherVar myVar [otherVar myVar ...]

Makes myVar in local scope equivalent to otherVar at context level (see uplevel) so

they share the same storage space.

vwait varName

Enter Tcl event loop until global variable varName is modified.

26

Tcl Reference Guide

Command Index

after, 23

append, 11

apply (8.5), 24

array, 9

auto execok, 24

auto import, 24

auto load, 24

auto mkindex, 24

auto qualify, 24

auto reset, 24

bgerror, 24

binary, 11

break, 5

case, 5

catch, 24

cd, 15

chan (8.5), 18

clock, 15

close, 17

concat, 8

continue, 5

dde, 24

dict (8.5), 10

encoding, 12

eof, 17

error, 24

eval, 24

exec, 16

exit, 5

expr, 24

fblocked, 17

fconfigure, 17

fcopy, 17

file, 5

fileevent, 17

flush, 17

for, 5

foreach, 5

format, 12

gets, 17

glob, 16

global, 24

history, 24

if, 5

incr, 25

info, 7

interp, 20

join, 8

lappend, 8

lassign (8.5), 8

lindex, 8

linsert, 8

list, 8

llength, 8

load, 25

lrange, 8

lrepeat (8.5), 8

lreplace, 8

lreverse (8.5), 9

lsearch, 9

lset, 9

lsort, 9

memory, 25

msgcat, 25

namespace, 22

open, 18

package, 22

parray, 10

pid, 17

pkg::create, 25

pkg mkIndex, 25

platform::shell (8.5), 25

platform (8.5), 25

proc, 25

puts, 18

pwd, 17

read, 18

regexp, 12

registry, 25

regsub, 13

rename, 25

return, 5

scan, 13

seek, 18

set, 25

socket, 18

source, 25

split, 9

string, 13

subst, 14

switch, 5

tcltest, 25

tcl endOfWord, 14

tcl findLibrary, 25

tcl startOfNextWord, 14

tcl startOfPreviousWord,

14

tcl wordBreakAfter, 14

tcl wordBreakBefore, 14

tell, 18

time, 26

tm (8.5), 25

trace, 26

unknown, 26

unload (8.5), 26

unset, 26

update, 26

uplevel, 26

upvar, 26

variable, 23

vwait, 26

while, 5

27

Tcl Reference Guide

Notes

Tcl Reference Guide Revision 8.5.2 ©1989,1997,2000,2014,2021

28

