
Tcl 8.6 Reference Guide

Tcl/Tk program designed and created by

John Ousterhout <ouster(at)scriptics(dot)com>

Tcl/Tk 8.0 reference guide contents written by

Paul Raines <raines(at)slac(dot)stanford(dot)edu>

Jeff Tranter <tranter(at)pobox(dot)com>

Reference guide format designed and created by

Johan Vromans <jvromans(at)squirrel(dot)nl>

Reference guide reduced to Tcl only and updated to Tcl 8.6 by

Peter Kamphuis <quickref(at)campacasa(dot)eu>

The PDF and LATEX sources of this reference guide can be found at

https://www.campacasa.eu/tcl-quick-reference.html

Contents

Conventions . . . . . . . . . . . . . . . . . . . . . . . 2

1. Basic Tcl Language Features . . . . . . . . . . . . . . . 2

2. Tcl Special Variables . . . . . . . . . . . . . . . . . . . 3

3. Operators and Expressions . . . . . . . . . . . . . . . . 3

4. Control Statements . . . . . . . . . . . . . . . . . . . . 4

5. Tcl Interpreter Information . . . . . . . . . . . . . . . . 5

6. Strings and Binary Data . . . . . . . . . . . . . . . . . 8

7. Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

8. Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . 16

9. Dictionaries . . . . . . . . . . . . . . . . . . . . . . . 17

10. System Interaction . . . . . . . . . . . . . . . . . . . . 19

11. File Information . . . . . . . . . . . . . . . . . . . . . 22

12. File Input/Output . . . . . . . . . . . . . . . . . . . . . 24

13. Channels . . . . . . . . . . . . . . . . . . . . . . . . . 27

14. Compression/Decompression Operations . . . . . . . . 30

15. Packages . . . . . . . . . . . . . . . . . . . . . . . . . 34

16. Namespaces . . . . . . . . . . . . . . . . . . . . . . . 35

17. Multiple Interpreters . . . . . . . . . . . . . . . . . . . 37

18. Coroutines . . . . . . . . . . . . . . . . . . . . . . . . 42

19. HTTP/1.1 Protocol . . . . . . . . . . . . . . . . . . . . 42

20. Object Oriented Tcl . . . . . . . . . . . . . . . . . . . 42

21. Other Tcl Commands . . . . . . . . . . . . . . . . . . 43

22. Pattern Globbing . . . . . . . . . . . . . . . . . . . . . 47

23. Regular Expressions . . . . . . . . . . . . . . . . . . . 47

Command Index . . . . . . . . . . . . . . . . . . . . . 51

Tcl Reference Guide Revision 8.6.a

https://www.campacasa.eu/tcl-quick-reference.html


Tcl Reference Guide

Conventions

fixed Denotes literal text.

this Means variable text, i.e. things you must fill in.

word Is a keyword, i.e. a word with a special meaning.

[ ] Denotes an optional part (unless command substitution with “[command]”

is meant).

. . . Denotes a repetition.

Several Tcl (sub) commands support the switch or option - - (double hyphen). It can be

used as last switch or option, to allow the next arguments to start with a hyphen.

See command(n) manual pages or https://www.tcl.tk/man/tcl8.6/ for more

details on the various Tcl commands. A lot of information from the Tcl command manual

pages was taken as input for this reference guide.

1. Basic Tcl Language Features

A Tcl script is a string containing one or more commands, which each are broken into

words and will undergo substitions as described below. See Tcl(n) manual page for more

details.

; or <newline> Command separator.

\ Command or line continuation if last character in line.

"hello $a" Quoting with substitution.

{hello $a} Quoting with no substitution (deferred substitution).

{*}word Argument expansion. If a word starts with the string “{*}” followed

by a non-whitespace character, then the leading “{*}” is removed

and the rest of the word is parsed and substituted as any other word.

[expr 1+2] Command substitution.

$name Substitution with value of scalar variable with given name. Braces can

be used to protect the variable name (as in ${name}xyz).

$name(index) Substitution with value of element in array variable.

\char Backslash substitution (see below).

# Comments out rest of line (if first non−whitespace character). Use

“;#” for a comment at end of line after a command.

The only data type in Tcl is a string. Tcl is Unicode-aware, strings and string lengths go

by character, not by byte. Some commands, however, will interpret arguments as

numbers/boolean in which case the formats are:

Integer: 123 -456 0xff (hex) 0o17 0377 (both octal)

0b0101 (binary)

Floating Point: 2.1 .3 4. -6e4 7.91e+16

Boolean: false true 0 1 no yes off on (also upper case)

Tcl makes the following backslash substitutions:

\a audible alert (U+000007) \<newline>whiteSpace

\b backspace (U+000008) a single space (line continuation)

\f form feed (U+00000C) \\ a backslash

\n newline (U+00000A) \ooo octal value (o=0-7, range 000-377)

\r carriage return (U+00000D) \xhh hexadecimal value (h=0-9, a-f)

\t horizontal tab (U+000009) \uhhhh Unicode character (h=0-9, a-f)

\v vertical tab (U+00000B) \Uhhhhhhhh Unicode character (h=0-9, a-f)

2

https://www.tcl.tk/man/tcl8.6/


Tcl Reference Guide

2. Tcl Special Variables

argc Number of arguments to tclsh.

argv List of arguments to tclsh.

argv0 The script that tclsh started executing or the name by which

tclsh was invoked.

auto_path List of directories to search during auto-load operations.

env Array where each element name is an enviroment variable.

errorCode Error code information from the last Tcl error.

errorInfo Describes the stack trace of the last Tcl error.

tcl_interactive Contains 1 if running interactively, 0 otherwise.

tcl_library Location of standard Tcl libraries.

tcl_nonwordchars A regular expression, controlling what are “non-word”

characters.

tcl_patchLevel Current patchlevel of Tcl interpreter in the form x.y.z.

tcl_pkgPath List of directories to search for package loading.

tcl_platform Array with elements byteOrder, debug, engine,

machine, os, osVersion, pathSeparator,

platform, pointerSize, threaded, user, and

wordSize.

tcl_precision Number of significant digits to retain when converting

floating-point numbers to strings (default 0, meaning using as

few as possible). Don’t change, legacy only.

tcl_rcFileName User-specific startup file to source upon initialization.

tcl_traceCompile Level of tracing information output during bytecode

compilation.

tcl_traceExec Level of tracing information output during bytecode execution.

tcl_version Current version of Tcl interpreter in the form x.y.

tcl_wordchars A regular expression, controlling what are “word” characters.

See tclvars(n) manual page for more details.

3. Operators and Expressions

The expr command recognizes the following operators, in decreasing precedence order:

- + ˜ ! Unary minus, unary plus, bitwise NOT, logical NOT.

** Exponentiation.

* / % Multiply, divide, remainder.

+ - Add, subtract.

<< >> Bitwise shift left, bitwise shift right.

< > <= >= Boolean comparisons.

== != Boolean equal, not equal.

eq ne Boolean string equal, not equal.

in ni In list, not in list.

& Bitwise AND.
∧ Bitwise exclusive OR.

| Bitwise (inclusive) OR.

&& Logical AND.

|| Logical OR.

x ? y : z If x != 0, then result is y, else z.

3



Tcl Reference Guide

All operators support integers. All support floating point except ˜, %, <<, >>, &, ∧, and |.

Boolean operators can also be used for string operands, in which case string comparison

will be used. This will occur if any of the operands are not valid numbers. The &&, ||,

and ?: operators have “lazy evaluation”, as in C.

Possible operands are numeric values, Tcl variables (with $), strings in double quotes or

braces, Tcl commands in brackets, and the following math functions:

abs arg ceil arg exp arg isqrt arg pow x y sqrt arg

acos arg cos arg floor arg log arg rand srand arg

asin arg cosh arg fmod x y log10 arg round arg tan arg

atan arg double arg hypot x y max arg . . . sin arg tanh arg

atan2 y x entier arg int arg min arg . . . sinh arg wide arg

bool arg

See expr(n), mathfunc(n) and mathop(n) manual pages for more details.

4. Control Statements

Commands that control the flow of a Tcl script by conditional or repeated (looping)

execution.

break Abort innermost containing loop command. Returns a 3 (TCL_BREAK) result

code, causing a break exception to occur.

continue

Skip to the next iteration of innermost containing loop command. Returns a 4

(TCL_CONTINUE) result code, causing a continue exception to occur.

exit [returnCode]

Terminate the process, returning returnCode (an integer which defaults to 0) to

the system as the exit status.

for start test next body

Looping command where start, next, and body are Tcl command strings, and test

is an expression string. Example:
for {set x 0} {$x<10} {incr x} {

puts "x is $x"
}

foreach varname list body

The Tcl command string body is evaluated for each item in the string list where

the variable varname is set to the item’s value. Example:
foreach x {a b c d e f} {

puts "x: $x"
}

foreach varlist1 list1 [varlist2 list2 . . . ] body

Same as above, except during each iteration of the loop, the variables in varlistN

are set to consecutive values from listN. Empty values are assigned to varlistN if

listN has less elements than other lists. Examples:
set x {}
foreach {i j} {a b c d e f} {

lappend x $j $i
}
# 3 iterations, x = "b a d c f e"

set x {}
foreach i {a b c} j {d e f g} {

lappend x $i $j
}
# 4 iterations, x = "a d b e c f {} g"

if expr1 [then] body1 [elseif expr2 [then] body2 . . . ] [[else] bodyN]

If expression string expr1 evaluates true, Tcl command string body1 is evaluated.

Otherwise if expr2 is true, body2 is evaluated, and so on. If none of the

expressions evaluate to true then bodyN is evaluated. Examples:

4



Tcl Reference Guide

if {$var1 == 1} { puts "var1 is one" }

if {$var2 == 1} {
puts "var2 is one"

} elseif {
$var2 == 2
$var2 == 3

} then {
puts "var2 is two or three"

} else {
puts "var2 is not one, two or three"

}

return [option value . . . ] [result]

Return from a procedure, or set return code of a script. The returned result

defaults to an empty string. Possible options are -code code, -errorcode

list, -errorinfo info, -errorstack list, -level level, and -options

options.

switch [options] [--] string [{]pattern1 body1 [pattern2 body2 . . . ] [}]

The string argument is matched against each of the patternN arguments in order.

The bodyN of the first match found is evaluated. If no match is found and the last

pattern is the keyword default, its bodyN is evaluated. A body specified as

“-” will use the body of the next pattern. Possible options are -exact (the

default), -glob, -regexp, -nocase, -matchvar varName (only with

-regexp), and -indexvar varName (only with -regexp). Examples:
set foo "abc"
switch abc a - b {expr {1}} $foo {expr {2}} default {expr {3}}
# result: 2

switch -glob aaab {
a*b -
b {expr {1}}
a* {expr {2}}
default {expr {3}}

}
# result: 1

while test body

Execute the Tcl command string body as long as expression string test evaluates

to true. Example:
set x 0
while {$x<10} {

puts "x: $x"
incr x

}

5. Tcl Interpreter Information

The info command provides information about various internals of the Tcl interpreter.

Following subcommands (which may be abbreviated) are available:

info args procName

Return a list containing the names of the arguments to procedure procName, in

order.

info body procName

Return the body of procedure procName.

info class subcommand class [arg . . . ]

Return information about the class class. The subcommands are described under

“Class Introspection” below.

info cmdcount

Return the total number of commands that have been invoked in this interpreter.

info commands [pattern]

Return list of all Tcl commands visible the current namespace (built-ins and

procs), optionally string matching pattern.

5



Tcl Reference Guide

info complete command

Return 1 if command is a complete Tcl command, 0 otherwise. Complete means

having no unclosed quotes, braces, brackets or array element names

info coroutine

Return the name of the currently executing coroutine, empty string otherwise.

info default procName arg varName

Return 1 if procedure procName has a default for argument arg and places the

value in variable varName. Return 0 if there is no default.

info errorstack interp

Return, in a form that is programmatically easy to parse, the function names and

arguments at each level from the call stack of the last error in the given interp, or in

the current one if not specified.

info exists varName

Return 1 if the variable varName exists in the current context and has been defined

by being given a value, 0 otherwise.

info frame [number]

Provides access to all frames on the stack. If number is specified, then the result is

a dictionary containing the location information for the command at the numbered

level on the stack.

info functions [pattern]

Return list of all math functions, optionally string matching pattern.

info globals [pattern]

Return list of global variables, optionally string matching pattern.

info hostname

Return name of computer on which interpreter was invoked.

info level [number]

Without number return the stack level of the invoking procedure. Or return a list

with name and arguments of procedure invoked at stack level number.

info library

Return name of library directory where standard Tcl scripts are stored. This is the

value of the tcl_library variable and may be changed by setting that variable.

info loaded [interp]

Return list describing packages loaded into interp, defaulting to any interpreter.

info locals [pattern]

Return list of local variables, optionally string matching pattern.

info nameofexecutable

Return full path name of binary from which the application was invoked.

info object subcommand [arg . . . ]

Return information about the object object. The subcommands are described under

“Object Introspection” below.

info patchlevel

Return the value of the global variable tcl_patchLevel, which holds the exact

version of the Tcl library in major.minor.patchLevel form by default.

info procs [pattern]

Return list of Tcl procedures in current namespace, optionally string matching

pattern.

info script [fileName]

Return name of Tcl script currently being evaluated. Can be set to fileName for the

duration of the active invocation.

6



Tcl Reference Guide

info sharedlibextension

Return extension used by platform for shared objects (for example, .so.

info tclversion

Return the value of the global variable tcl_version, which holds the version of the

Tcl library in major.minor form by default.

info vars [pattern]

Return list of currently-visible variables, optionally string matching pattern.

Class Introspection

info class call class method

Return a list of lists of four elements as description of the method implementations

that are used to provide a stereotypical instance of class’s implementation of

method.

info class constructor class

Return a two element list as description of the definition of the constructor of class

class.

info class definition class method

Return a two element list as description of the definition of the method named

method of class class.

info class destructor class

Return the body of the destructor of class class.

info class filters class

Return the list of filter methods set on class class.

info class forward class method

Return the argument list for the method forwarding called method that is set on the

class called class.

info class instances class [pattern]

Return a list of instances of class class, optionally string matching pattern.

info class methods class [option . . . ]

Return a list of all public (i.e. exported) methods of the class called class. Possible

options are -all and -private.

info class methodtype class method

Return a description of the type of implementation used for the method named

method of class class. The result can be method or forward.

info class mixins class

Return a list of all classes that have been mixed into the class named class.

info class subclasses class [pattern]

Return a list of direct subclasses of class class, optionally string matching pattern.

info class superclasses class

Return a list of direct superclasses of class class in inheritance precedence order.

info class variables class

Return a list of all variables that have been declared for the class named class.

Object Introspection

info object call object method

Return a list of lists of four elements as description of the method implementations

that are used to provide object’s implementation of method.

info object class object [className]

Return a boolean value indicating whether the object is of given class or, if

className is not specified, the class of the object object.

7



Tcl Reference Guide

info object definition object method

Return a two element list as description of the definition of the method named

method of object object.

info object filters object

Return the list of filter methods set on object.

info object forward object method

Return the argument list for the method forwarding called method that is set on the

object called object.

info object isa category object [arg]

Return a boolean value that indicates whether the object argument meets the

criteria for the category. The supported categories are:

info object isa class object [arg]

Return whether object is a class.

info object isa metaclass object [arg]

Return whether object is a class that can manufacture classes.

info object isa mixin object [arg]

Return whether class is directly mixed into object.

info object isa object object [arg]

Return whether object really is an object.

info object isa typeof object [arg]

Return whether class is the type of object.

info object methods object [option . . . ]

Return a list of all public (i.e. exported) methods of the object called object.

Possible options are -all and -private.

info object methodtype object method

Return a description of the type of implementation used for the method named

method of object object. The result can be method or forward.

info object mixins object

Return a list of all classes that have been mixed into the object named object.

info object namespace object

Return the name of the internal namespace of the object named object.

info object variables object

Return a list of all variables that have been declared for the object named object.

info object vars object [pattern]

Return a list of all variables in the private namespace of the object named object,

optionally string matching pattern.

6. Strings and Binary Data

Commands that process text strings or binary data. Note that Tcl is Unicode-aware,

strings and string lengths go by character, not by byte.

append varName [value . . . ]

Appends all of the given value arguments to the string stored in varName. If

varName does not exist, it is given a value equal to the concatenation of all the

value arguments.

binary decode format [-strict] data

Return the binary version of data encoded as format. Supported formats are

base64, hex and uuencode.

8



Tcl Reference Guide

binary encode format [-option value . . . ] data

Return a readable string of binary data encoded as format. Supported formats and

options are:

base64 -maxlen length No line splitting by default.

-wrapchar character Newline by default.

hex No options.

uuencode -maxlen length 61 by default, valid range is 5 to 85.

-wrapchar character(s) Newline by default, acceptable are

zero or more \x09 (TAB), \x0B (VT),

\x0C (FF), \x0D (CR) followed by

zero or one newline \x0A (LF).

binary format formatString [arg . . . ]

Return a binary string representation of args composed according to formatString,

a sequence of zero or more field codes each followed by an optional integer count

or *. The possible field codes are:

a chars (null padding) w 64-bit int (little-endian)

A chars (space padding) W 64-bit int (big-endian)

b binary (low-to-high) m as w|W, but native byte order

B binary (high-to-low) f float

h hex (low-to-high) r float (little-endian)

H hex (high-to-low) R float (big-endian)

c 8-bit int d double

s 16-bit int (little-endian) q double (little-endian)

S 16-bit int (big-endian) Q double (big-endian)

t as s|S, but native byte order x nulls

i 32-bit int (little-endian) X backspace

I 32-bit int (big-endian) @ absolute position

n as i|I, but native byte order

binary scan string formatString [varName . . . ]

Extracts values into varName’s from binary string according to formatString.

Return the number of values extracted. Field codes are the same as for binary

format, except for:

a chars (no stripping) A chars (stripping) x skip forward

encoding convertfrom [encoding] data

Return data converted to Unicode from the specified encoding (system encoding

by default) as string.

encoding convertto [encoding] string

Return string converted from Unicode to the specified encoding (system encoding

by default) as a sequence of bytes.

encoding dirs [directoryList]

Set search path for additional *.enc encoding data files, or return list of directories

in search path if directoryList is omitted.

encoding names

Return list of available encodings.

encoding system [encoding]

Set the system encoding, or return the current system encoding if encoding is

omitted.

format formatString [arg . . . ]

Return a formatted string generated in the ANSI C sprintf-like manner.

Placeholders in formatString have the form

9



Tcl Reference Guide

%[argpos$][flag][width][.prec][h|l|ll]char where argpos, width, and prec are

integers and possible values for flag are:

- Left-justified. space Space padding. # Alternate output.

+ Always signed. 0 Zero padding.

and possible values for char are:

d Signed decimal. X Unsigned HEX. e Float (0e0).

u Unsigned decimal. b Unsigned binary. E Float (0E0).

i Signed decimal. c Int to char. g Auto float (f or e).

o Unsigned octal. s String. G Auto float (f or E).

x Unsigned hex. f Float (fixed). % Plain %.

regexp [switches] [--] exp string [matchVar] [subMatchVar . . . ]

Return 1 if the regular expression exp matches part or all of string, 0 otherwise. If

specified, matchVar will be set to all the characters in the match and the following

subMatchVar’s will be set to matched parenthesized subexpressions. The following

switches are supported:

-about Don’t match RE, but instead return a list containing

information about the RE for debugging purposes.

-all Causes the regular expression to be matched as many times as

possible in the string, returning the total number of matches

found. Any match variables will contain information for the

last match only.

-expanded Enables use of the expanded regular expression syntax where

whitespace and comments are ignored.

-indices Instead of storing the matching characters from string in

matchVar and subMatchVars, each variable will contain a list of

two decimal strings giving the indices in string of the first and

last characters in the matching range of characters.

-inline The command will return a list with data that otherwise would

be placed in match variables. Match variables may not be

specified.

-line Enables newline-sensitive matching. “[∧” bracket expressions

and ”.” will not match newline, “∧” matches an empty string

after any newline in addition to its normal function, and “$”

matches an empty string before any newline in addition to its

normal function.

-linestop Changes the behavior of “[∧” bracket expressions and “.” so

that they stop at newlines.

-lineanchor Changes the behavior of “∧” and “$” (the “anchors”) so they

match the beginning and end of a line respectively.

-nocase Causes upper-case characters in string to be treated as lower

case during the matching process.

-start index A character index offset into the string to start matching the

regular expression at.

regsub [switches] [--] exp string subSpec [varName]

Replaces the first portion of string that matches the regular expression exp with

subSpec. If varName is specified, it will contain the result and the number of

replacements made is returned. If varName is not specified, the result is returned.

Back references can be made in subSpec. The following switches are supported:

-all Substitute all ranges in string that match exp.

10



Tcl Reference Guide

-expanded Enables use of the expanded regular expression syntax where

whitespace and comments are ignored.

-line Enables newline-sensitive matching. “[∧” bracket expressions

and ”.” will not match newline, “∧” matches an empty string

after any newline in addition to its normal function, and “$”

matches an empty string before any newline in addition to its

normal function.

-linestop Changes the behavior of “[∧” bracket expressions and “.” so

that they stop at newlines.

-lineanchor Changes the behavior of “∧” and “$” (the “anchors”) so they

match the beginning and end of a line respectively.

-nocase Upper-case characters in string will be converted to lower-case

before matching against exp; however, substitutions specified

by subSpec use the original unconverted form of string.

-start index A character index offset into the string to start matching the

regular expression at.

scan string formatString [varName . . . ]

Extracts values into given variables using ANSI C sscanf behavior. Return the

number of values extracted, or -1 if nothing could be extracted. If no varName is

specified, return a list with the extracted data, or an empty string if nothing could

be extracted.

Placeholders have the form %[argpos$][*][width][h|L|l|ll]char where * is for

discard, argpos, and width are integers and possible values for char are:

d decimal integer u decimal (unsigned) e,f,g,E,G float

o octal integer i any integer [chars] chars in given range

x,X hex integer c char to int [∧chars] chars not in range

b binary integer s string (non-blank) n no input scanned

The string command will perform several string operations. Following subcommands

(which may be abbreviated) are available:

string bytelength string

Return the number of bytes used to represent string in memory. Note: This

subcommand is deprecated and likely will be removed from a future Tcl release.

Refer to the string(n) manual page for more information.

string cat [string . . . ]

Concatenates the given strings and return the resulting compound string. Without

any string, return an empty string.

string compare [-nocase] [-length int] string1 string2

Return -1, 0, or 1, depending on whether string1 is lexicographically less than,

equal to, or greater than string2. Optionally comparing in case-insensitive manner

or only comparing the first int characters.

string equal [-nocase] [-length int] string1 string2

Return 1 if string1 and string2 are identical, or 0 when not. Optionally comparing

in case-insensitive manner or only comparing the first int characters.

string first needleString haystackString [startIndex]

Return index in haystackString of first occurance of needleString, or -1 if not

found. Optionally at or after index startIndex.

string index string charIndex

Return the charIndex’th character in string, or an empty string if charIndex doesn’t

fit to string.

11



Tcl Reference Guide

string is class [-strict] [-failindex varName] string

Return 1 if string is a valid member of the specified character class, or 0 when not.

If -strict is specified, then an empty string returns 0, otherwise an empty string

will return 1 on any class. If -failindex is specified, upon failure variable

varName will contain the index in string where class is no longer valid. Following

character classes are recognized (class name can be abbreviated):

alnum Any Unicode alphabet or digit character.

alpha Any Unicode alphabet character.

ascii Any character with a value less than \u0080 (7-bit ASCII

range).

boolean Any boolean form.

control Any Unicode control character.

digit Any Unicode digit character (includes characters outside of the

[0-9] range).

double Any floating point form.

entier Any arbitrily sized integer value.

false Any boolean form that is false.

graph Any Unicode printing character, except space.

integer Any 32-bit integer value. Returns 0 and varName is -1 upon

overflow.

list Any proper list structure.

lower Any Unicode lower case alphabet character.

print Any Unicode printing character, including space.

punct Any Unicode punctuation character.

space Any Unicode whitespace character.

true Any boolean form that is true.

upper Any Unicode upper case alphabet character.

wideinteger Any wide integer. Returns 0 and varName is -1 upon overflow.

wordchar Any Unicode word character (any alphanumeric character and

any connector punctuation characters, like underscore).

xdigit Any hexadecimal digit character ([0-9A-Fa-f]).

string last needleString haystackString [lastIndex]

Return index in haystackString of last occurance of needleString, or -1 if not

found. Optionally at or before index lastIndex.

string length string

Return the number of characters in string.

string map [-nocase] mapping string

Replaces substrings in string based on the list of key-value pairs in mapping and

return the result. Iteration over string is only done once, any key appearing first

will be replaced first. Optionally comparing in case-insensitive manner.

string match [-nocase] pattern string

Return 1 if glob pattern matches string, 0 otherwise. Optionally comparing in

case-insensitive manner.

string range string first last

Return characters from string at indices first through last inclusive.

string repeat string count

Return string repeated count number of times.

12



Tcl Reference Guide

string replace string first last [newString]

Remove characters from string at indices first through last inclusive, and return the

result. If newString is specified, it replaces the removed characters.

string reverse string

Return string with its characters in reverse order.

string tolower string [first] [last]

Return new string formed by converting all characters in string to lower case.

Optionally only converting from index first to index last.

string totitle string [first] [last]

Return new strings formed by converting the first character in string to title case

(upper case), and all further characters to lower case. Optionally only converting

from index first to index last.

string toupper string [first] [last]

Return new string formed by converting all characters in string to upper case.

Optionally only converting from index first to index last.

string trim string [chars]

Return new string formed by removing from string any leading or trailing

characters present in the set chars (defaults to white space).

string trimleft string [chars]

Return new string formed by removing from string any leading characters present

in the set chars (defaults to white space).

string trimright string [chars]

Return new string formed by removing from string any trailing characters present

in the set chars (defaults to white space).

string wordend string charIndex

Return index of character just after last one in word at charIndex in string. Note:

This subcommand is deprecated and likely will be removed from a future Tcl

release. Refer to the string(n) manual page for more information.

string wordstart string charIndex

Return index of first character of word at charIndex in string. Note: This

subcommand is deprecated and likely will be removed from a future Tcl release.

Refer to the string(n) manual page for more information.

subst [-nobackslashes] [-nocommands] [-novariables] string

Return result of backslash, command, and variable substitutions on string. Each

may be turned off by switch.

Following string processing commands are provided through the Tcl library:

tcl_endOfWord string charIndex

Return the index of the first end-of-word location after charIndex in string (-1 if

not found).

tcl_startOfNextWord string charIndex

Return the index of the first start-of-word location after charIndex in string (-1 if

not found).

tcl_startOfPreviousWord string charIndex

Return the index of the first start-of-word location before charIndex in string (-1 if

not found).

tcl_wordBreakAfter string charIndex

Return the index of the first word boundary after charIndex in string (-1 if not

found).

tcl_wordBreakBefore string charIndex

Return the index of the first word boundary before charIndex in string (-1 if not

13



Tcl Reference Guide

found).

Following string processing commands are provided through the tcl namespace:

::tcl::prefix all table string

Return a list of all elements in table (a list of strings) that begin with the prefix

string.

::tcl::prefix longest table string

Return the longest common prefix of all elements in table (a list of strings) that

begin with the prefix string.

::tcl::prefix match [options] table string

If string equals one element in table (a list of strings) or is a prefix to exactly one

element, the matched element is returned. If not, the result depends on the -error

option. Options are:

-exact Accept only exact matches.

-message string

Use string in the error message at a mismatch. Default is “option”.

-error options

The options are used when no match is found. If options is empty, no

error is generated and an empty string is returned. Otherwise the

options are used as return options when generating the error message.

Note: String indices start at 0 and the word end may be used to reference the last

character in the string. Computations in the form end-N are possible.

7. Lists

Commands that process lists. Since the only data type in Tcl is a string, lists can be

represented by strings with space separated content. For example, “[list arg1

arg2 arg3]” is equal to “"arg1 arg2 arg3"”.

concat [arg arg . . . ]

Return the concatenation of each list arg as a single list.

join list [joinString]

Return the string created by joining all elements of list with joinString (a space

character by default).

lappend varName [value . . . ]

Appends each value as element to the end of the list stored in varName. List

varName is created with the value elements if it doesn’t exist yet.

lassign list varName [varName . . . ]

Assign list elements to variables varName. Too many varName will be empty, too

few varName will return unassigned elements. Can be used as “shift” command as

known from shell languages, like in:
set ::argv [lassign $::argv argumentToReadOff]

lindex list [index . . . ]

Return the value of element at index in list. Without index return list. Multiple

index allow to select from sublists.

linsert list index element [element . . . ]

Return a new list formed by inserting given new elements before element at index

in list.

list [arg . . . ]

Return a new list formed by using each arg as an element.

llength list

Return number of elements in list.

14



Tcl Reference Guide

lmap varName list body

Execute body with each element of list assigned to loop variable varName. Returns

an accumulator list, which gets the results of body appended if body completes

normally. The break and continue statements can be used in body to have it not

complete normally.

lmap varList1 list1 [varList2 list2 . . . ] body

Same as above, except during each iteration of the loop, the variables in varlistN

are set to consecutive values from listN. Empty values are used in varlistN if listN

doesn’t have enough elements.

lrange list first last

Return a new list from slice of list at indices first through last inclusive.

lrepeat number element1 [element2 . . . ]

Return a new list consisting of number times the sequence of elementN.

lreplace list first last [element . . . ]

Return a new list formed by replacing zero or more elements with indices first

through last in list with zero or more other elements.

lreverse list

Return a new list consisting of elements of list in reverse order.

lsearch [options] list pattern

Return the index of first element in list that matches pattern (or -1 for no match).

With options -all or -inline a list or matching value is returned (or empty

string for no match). The following options are supported:

-exact Pattern is a literal string to be matched exactly.

-glob Pattern is a glob-style pattern to be matched. This is the

default.

-regexp Pattern is treated as regular expression.

-sorted Expects list to be sorted and will use a more efficient search

algorithm. Behaves like -exact.

-all Return a list of all matching indices.

-inline Return the matching value instead of its index.

-not Negates the sense of the match.

-start index Search list starting at position index.

-ascii Examine list elements as Unicode strings (option name is

for backward compatibility).

-dictionary Compare list elements using dictionary-style comparisons

(see lsort).

-integer Compare list elements as integers.

-nocase Compare in case-insensitive manner. No effect with

-dictionary, -integer or -real.

-real Compare list elements as floating-point values.

-decreasing When used with -sorted, assume list elements sorted in

decreasing order.

-increasing When used with -sorted, assume list elements sorted in

increasing order. This is the default.

-bisect Implies -sorted. Return the last index where the element

is less than or equal to the pattern (or greater than or equal

for an decreasing list).

-index indexList When searching lists of lists, the path of indices within each

list element defining the term to match against.

15



Tcl Reference Guide

-subindices Returns complete path(s) as index result. Has no effect

without -index.

lset varName [index . . . ] newValue

Replace an element at index in the list stored in varName with newValue (and also

return that list). Appends to the list if index is equal to the number of elements in

$varName. Multiple index allow to assign to sublists. Without index replaces the

old value of varName.

lsort [options] list

Return a new list formed by sorting list according to options. These are:

-ascii Use string comparison with Unicode code-point collation

order (option name is for backward compatibility). This is

the default.

-dictionary Like -ascii but ignores case and is number smart.

Overrides -nocase.

-integer Convert list elements to integers and use integer comparison.

-real Convert list elements to floating-point values and use

floating comparison.

-command command

Uses command for comparison, which takes two arguments

and returns an integer less than, equal to, or greater than

zero.

-increasing Sort list in increasing order. This is the default.

-decreasing Sort list in decreasing order.

-indices Returns a list of indices into list in sorted order instead of

the values themselves.

-index indexList Assumes elements of list to be sublists. Sorts on the

indexListth element of each sublist.

-stride strideLength

Assumes groups of strideLength elements and sorts on their

first element. If used with -index, sorts on the specified

index of each group.

-nocase Compare in case-insensitive manner.

-unique Uniquify the sorted list. The last duplicate is kept.

split string [splitChars]

Return a list formed by splitting string at each character in splitChars. Splits on

white-space by default.

Note: List indices start at 0 and the word end may be used to reference the last element

in the list. Computations in the form end-N are possible.

8. Arrays

Associative arrays in Tcl can be indexed by arbitrary strings, and are stored and retrieved

without any specific order. Array element values are directly accessed with

“$arrayvar(element)”.

The array command will perform several array operations. Following subcommands

(which may be abbreviated) are available:

array anymore arrayName searchId

Return 1 if anymore elements are left to be processed in array search searchId on

16



Tcl Reference Guide

arrayName, 0 otherwise. SearchId is the return value from a previous array

startsearch invocation.

array donesearch arrayName searchId

Terminate the array search searchId on arrayName, and destroy the state

associated with that search. Returns an empty string. SearchId is the return value

from a previous array startsearch invocation.

array exists arrayName

Return 1 if arrayName is an array variable, 0 otherwise.

array get arrayName [pattern]

Return a list where each odd element is an element name in arrayName and the

following even element its corresponding value. Optionally returning only for

array elements that string match pattern.

array names arrayName [mode] [pattern]

Return a list of all element names in arrayName, optionally string matching

pattern. Mode may be one of:

-exact Pattern is a literal string to be matched exactly.

-glob Pattern is a glob-style pattern to be matched. This is the

default.

-regexp Pattern is treated as regular expression.

array nextelement arrayName searchId

Return the name of next element in arrayName for the search searchId. SearchId is

the return value from a previous array startsearch invocation.

array set arrayName list

Set values of elements in arrayName for list in array get format.

array size arrayName

Return number of elements in arrayName.

array startsearch arrayName

Return a search id to use for an element-by-element search of arrayName.

array statistics arrayName

Return statistics about the distribution of data within the hashtable that represents

the array.

array unset arrayName [pattern]

Unset all elements in the array arrayName, optionally string matching pattern.

Returns an empty string.

Following array command is provided through the Tcl library:

parray arrayName [pattern]

Print to standard output the names and values of all element names in arrayName,

optionally string matching pattern.

9. Dictionaries

Dictionaries are values that contain an efficient, order-preserving mapping from arbitrary

keys to arbitrary values. Each key in the dictionary maps to a single value. They have a

textual format that is exactly that of any list with an even number of elements, with each

mapping in the dictionary being represented as two items in the list.

The dict command will perform several dictionary operations. Following subcommands

(which may be abbreviated) are available:

dict append dictVariable key [string . . . ]

Append the given string(s) to the value that the given key maps to in the dictionary

value contained in the given variable, writing the resulting dictionary value back to

17



Tcl Reference Guide

that variable. Non-existent keys are treated as if they map to an empty string.

Returns the updated dictionary value.

dict create [key value . . . ]

Return a new dictionary that contains each of the key/value mappings listed as

arguments.

dict exists dictValue key [key . . . ]

Return a boolean value indicating whether the given key exists in the given

dictionary value. Multiple keys can be specified to address nested dictionaries.

dict filter dictValue filterType arg [arg . . . ]

Return a new dictionary that contains just those key/value pairs that match the

specified filter type on the given dictionary value. Supported filter types are:

dict filter dictValue key globPattern

Match only those key/value pairs whose keys string match the given

globPattern.

dict filter dictValue script {keyVar valueVar} script

Evaluate the given script (returning a boolean value) for each key/value pair

(assigned to the given keyVar and valueVar variables). Match only those

key/value pairs for which script returns true. The script can return with a

condition of TCL_BREAK or TCL_CONTINUE accordingly.

dict filter dictValue value globPattern

Match only those key/value pairs whose values string match the given

globPattern.

dict for {keyVar valueVar} dictValue body

Iterate over the given dictionary value, setting the keyVar and valueVar variables

for each key/value pair, and evaluate the given script body (like foreach). Returns

an empty string. The given script can generate a TCL_BREAK or

TCL_CONTINUE result accordingly.

dict get dictValue [key . . . ]

Get the value of the given key in the given dictionary value. Multiple keys allow

getting values in nested dictionaries. If no keys are given, return a list containing

key/value pairs (like array get).

dict incr dictVariable key [increment]

Add the given increment value (default 1) to the value that the given key maps to in

the dictionary value contained in the given variable, writing the resulting dictionary

value back to that variable. Non-existent keys are treated as if they map to 0.

Returns the updated dictionary value.

dict info dictValue

Return information about the given dictionary value.

dict keys dictValue [globPattern]

Return a list of all keys in the given dictionary value, optionally only those keys

string matching globPattern.

dict lappend dictVariable key [value . . . ]

Append the given items to the list value that the given key maps to in the dictionary

value contained in the given variable, writing the resulting dictionary value back to

that variable. Non-existent keys are treated as if they map to an empty list. Returns

the updated dictionary value.

dict map {keyVar valueVar} dictValue body

Apply a transformation to each element of a dictionary, returning a new dictionary.

Script body is evaluated with keyVar and valueVar set to each element of the

dictionary value contained in the given variable. The script can use break,

18



Tcl Reference Guide

terminating the command and returning the dictionary elements processed so far,

and continue, aborting the current iteration and not modifying the current element.

dict merge [dictValue . . . ]

Return a dictionary that contains the contents of each of the dictValue arguments.

In case two or more dictionaries contain a mapping for the same key, the resulting

dictionary maps that key to the value of the last specified dictionary with that key.

dict remove dictValue [key . . . ]

Return a new dictionary that is a copy of the given dictionary value, with the

mappings for each key listed removed.

dict replace dictValue [key value . . . ]

Return a new dictionary that is a copy of the given dictionary value, replacing or

adding the given key/value pairs.

dict set dictVariable key [key . . . ] value

Update the dictionary value contained in the given variable by mapping the given

key to the given value. Multiple keys allow setting values in nested dictionaries.

dict size dictValue

Return the number of key/value mappings in the given dictionary value.

dict unset dictVariable key [key . . . ]

Update the dictionary value contained in the given variable to not contain a

mapping for the given key. Multiple keys allow removing mappings in nested

dictionaries. Returns the updated dictionary value.

dict update dictVariable key varName [key varName . . . ] body

Execute the Tcl script in body with the value for each key (of the dictionary value

in the given variable) mapped to the variable varName. Changes made to the

varName variable(s) are reflected back to the given dictionary. Returns the result of

the the evaluation of body.

dict values dictValue [globPattern]

Return a list of all values in the given dictionary value, optionally only those values

string matching globPattern.

dict with dictVariable [key . . . ] body

Execute the Tcl script in body with the value for each key (of the dictionary value

in the given variable) mapped to a variable with the same name. Multiple keys

allow nested dictionaries. Returns the result of the the evaluation of body.

10. System Interaction

Commands that interact with the operating system.

cd [dirName]

Change working directory to dirName, or to the home directory ($env(HOME)) if

dirName is not given. Returns an empty string.

clock subCommand [parameters]

Obtain and manipulate dates and times. Any timeVal parameter indicates a time

expressed as an integer number of seconds since 1 January 1970, 00:00 UTC. For

clock arithmetic, formatting, and scanning the following options are supported:

-gmt boolean

Specifies that a time should be processed in UTC, or defaults to the local

time zone. This usage is obsolete; correct would be to use e.g.

-timezone :UTC.

-locale localeName

Specifies that locale-dependent processing is to be done in the locale

identified by localeName.

19



Tcl Reference Guide

-timezone zoneName

Specifies that processing is to be done according to the rules for the time

zone specified by zoneName. Default is to use the current or local time

zone.

Following clock subCommands are available:

clock add timeVal [count unit . . . ] [option value]

Add an offset to a time timeVal and return the result. As unit one of the words

seconds, minutes, hours, days, weeks, months, or years, or any

unique prefix of such word can be used.

clock clicks [resolution]

Return a hi-res system-dependent integer time value. The resolution can be

specified as -milliseconds or -microseconds to obtain a count in

milliseconds or microseconds, respectively. The use of resolution, however, is

obsolete and clock milliseconds or clock microseconds are the preferred ways

of obtaining these counts.

clock format timeVal [option value . . . ]

Convert timeVal to a human-readable format and return the result as string. The

option -format format recognizes the following placeholders (names as for the

given locale):

%a weekday (abbr) %N month ( 1 – 12)

%A weekday (full) %Od,%Oe,%OH,%OI,%Ok,%Ol,%Om,

%b month (abbr) %OM,%OS,%Ou,%Ow,%Oy

%B month (full) locale as without “O”

%c locale date & time %p locale AM/PM

%C century %P locale am/pm

%d day (01 – 31) %Q reserved for internal use

%D %m/%d/%Y %r locale 12hr time

%e day ( 1 – 31) %R %H:%M

%Ec locale date & time %s timeVal

%EC locale era %S seconds (00 – 59)

%EE B.C.E or C.E. %t TAB

%Ex locale alternate date %T %H:%M:%S

%EX locale alternate time %u weekday (1 – 7 = Mon – Sun)

%Ey locale alternate year (00 – 99) %U week (00 – 53)

%EY locale alternate year (full) %V ISO8601 week (01 – 53)

%g ISO8601 year (00 – 99) %w weekday (0 – 6 = Sun – Sat)

%G ISO8601 year (full) %W week (00 – 53)

%h month (abbr), same as %b %x locale date

%H hour (00 – 23) %X locale time

%I hour (01 – 12) %y year (00 – 99)

%j day (001 – 366) %Y year (full)

%J Julian day number %z time zone (±hhmm)

%k hour (0 – 23) %Z locale time zone name

%l hour (1 – 12) %% literal %

%m month (01 – 12) %+ “%a %b %e %T %Z %Y”

%M minute (00 – 59)

The default format is “%a %b %d %T %Z %Y”.

clock microseconds

Return the current time as an integer number of microseconds.

clock milliseconds

Return the current time as an integer number of milliseconds.

20



Tcl Reference Guide

clock scan inputString [option value . . . ]

Scan a time that is expressed as a character string inputString and return an integer

number of seconds. The option -format format (see clock format above)

preferably is used to describe the expected format of inputString. Not using that

option will request a free-form scan and is deprecated: there are too many

ambiguities. The option -base timeVal specifies that any relative time present in

inputString is relative to timeVal.

clock seconds

Return the current time as an integer number of seconds (timeVal).

exec [-ignorestderr] [-keepnewline] [--] arg [arg . . . ] [&]

Execute subprocess using each arg as word for a shell pipeline and return results

written to standard out, optionally retaining the final newline char. With

-ignorestderr output to standard error will not be treated as error.

If the last argument is “&” execute the pipeline in background and return a list of

all subprocess process identifiers. Standard output from the last command in the

pipeline will go to the application’s standard output unless redirected.

The following constructs can be used to control I/O flow:

| Pipe (stdout).

|& Pipe (stdout and stderr).

< fileName Stdin from file.

<@ fileId Stdin from open file.

<< value Pass value to stdin.

> fileName Stdout to file.

2> fileName Stderr to file.

>& fileName Stdout and stderr to file.

>> fileName Append stdout to file.

2>> fileName Append stderr to file.

>>& fileName Append stdout and stderr to file.

>@ fileId Stdout to open file.

2>@ fileId Stderr to open file.

2>@1 Redirect stderr to stdout (must be at end).

>&@ fileId Stdout and stderr to open file.

Note: Behavior and capabilities of exec on Windows platform are different.

glob [switches] [--] [pattern . . . ]

Return a list of all files in current directory that match any of the given csh- or

bash-style glob patterns. The following switches are supported.

-directory directory

Search for files within the given directory.

-join Treat all pattern joined with directory separators as single

pattern.

-nocomplain Allow empty result without error.

-path pathPrefix Search for files with given pathPrefix.

-tails Only return file tail of each file found in any -directory

or -path specification.

-types typeList Only return files or directories of certain type. The

following types will be ORed: b (block special file), c

(character special file), d (directory), f (plain file), l

(symbolic link), p (named pipe), or s (socket). The

21



Tcl Reference Guide

following (UNIX) types will be ANDed: r (readable), w

(writable), and x (executable).

pid [fileId]

Return a list of process ids of all the processes in the pipeline fileId if given,

otherwise return process id of interpreter process.

pwd Return the absolute path name of the current working directory.

11. File Information

The file command provides several operations on a file’s name or attributes. Following

subcommands (which may be abbreviated) are available:

file atime name [time]

Return the time name was last accessed as seconds since January 1, 1970. Set

access time of name if time is specified.

file attributes name [option [value . . . ] ]

Return or set platform-specific attributes of name. Return a list if no option

specified. Options for UNIX:

-group [id] Return group name. Specified id can be name or id.

-owner [id] Return owner name. Specified id can be name or id.

-permissions [mode]

Return octal code. Specified mode can be octal or

symbolic, as known for chmod(1).

Options for Windows:

-archive [value] Return the value of or set or clear the archive attribute.

-hidden [value] Return the value of or set or clear the hidden attribute.

-longname Return the path with each element expanded to its long

version. Cannot be set.

-readonly [value] Return the value of or set or clear the readonly attribute.

-shortname Return the path with each element replaced with its short

(8.3) version. Cannot be set.

-system [value] Return the value of or set or clear the system attribute.

Options for MacOS:

-creator [type] Return or set the Finder creator type.

-hidden [value] Return the value of or set or clear the hidden attribute.

-readonly [value] Return the value of or set or clear the readonly attribute.

-rsrclength [0] Return the length of the resource fork. Can only be set to

0 (stripping off the resource fork).

file channels [pattern]

Return a list of all registered open channels, optionally string matching pattern.

file copy [-force] [--] source [source . . . ] target

Makes a copy of source under name target. If multiple sources are given, target

must be a directory. If source is a directory, its contents are recursively copied into

the target directory. Copied soft links are retained. Use -force to overwrite

existing files.

file delete [-force] [--] pathName [pathName . . . ]

Removes given files or directories. Use -force to remove non-empty directories.

file dirname name

Return a name comprised of all path components in name excluding the last

element.

22



Tcl Reference Guide

file executable name

Return 1 if file name is executable by current user, 0 otherwise.

file exists name

Return 1 if file name exists and user has search privileges for the directories

leading to it, 0 otherwise.

file extension name

Return all characters in name after and including the last dot in the last element of

name. Return empty string if the last element of name doesn’t contain a dot.

file isdirectory name

Return 1 if file name is a directory, 0 otherwise.

file isfile name

Return 1 if file name is a regular file, 0 otherwise.

file join name [name . . . ]

Joins file names using the correct path separator for the current platform.

file link [-symbolic|-hard] linkName [target]

Create a link linkName pointing to target. Return the link target if target is not

specified (or an error if linkName is not a link). On UNIX the default is a symbolic

link.

file lstat name varName

Same as file stat except uses the lstat kernel call. If name is a symbolic link, the

information returned in varName is for the link instead of the file it refers to.

file mkdir dir [dir . . . ]

Create each directory specified. Any non-existent parent directories will also be

created.

file mtime name [time]

Return the time name was last modified as seconds since January 1, 1970. Set

modification time of name if time is specified.

file nativename name

Return the platform-specific name of name.

file normalize name

Return a unique absolute, resolved and normalized path representation of name.

file owned name

Return 1 if name is owned by the current user, 0 otherwise.

file pathtype name

Return one of absolute, relative, or volumerelative.

file readable name

Return 1 if name is readable by current user, 0 otherwise.

file readlink name

Return the value of the symbolic link given by name.

file rename [-force] [--] source [source . . . ] target

Rename file or directory source to target. If target is an existing directory, each

source file or directory is moved there. The -force option forces overwriting of

existing files.

file rootname name

Return all the characters in name up to but not including last dot in the last

component of name. Return name if the last component doesn’t contain a dot.

file separator [name]

Return the character used to separate path segments on the current platform if no

name is specified, or the separator of the filesystem responsible for path.

23



Tcl Reference Guide

file size name

Return the size of name in bytes.

file split name

Return a list whose elements are the path components of name. The first list

element for an absolute path on UNIX will be “/”.

file stat name varName

Place results of stat kernel call on name in variable varName as an array with

elements atime, ctime, dev, gid, ino, mode, mtime, nlink, size, type,

and uid. Each element is a decimal string, only type is a string as returned by

file type.

file system name

Return a list of one or two elements. The first is the name of the filesystem for

name, the second represents the type if available.

file tail name

Return all characters in name after last directory separator (or just name if it

doesn’t contain any separators).

file tempfile [nameVar] [template]

Create a temporary file and return a read-write channel opened on that file. If

nameVar is specified, the name of the temporary file will be written into it. With

template parts of the template of the filename to use can be specified.

file type name

Return a string giving the type of name. Possible values are file, directory,

characterSpecial, blockSpecial, fifo, link, or socket.

file volumes

Return a list of absolute paths to the volumes mounted on the system. On UNIX,

without any virtual filesystems mounted as root volumes, this is just “/”. On

Windows this is a list of local drives.

file writable name

Return 1 if name is writable by current user, 0 otherwise.

12. File Input/Output

Commands to handle file reading and writing operations.

close channelId [r[ead]|w[rite]]

Close or half-close the open file channel channelId. A bidirectional channel can be

half-closed by specifying the direction to only close.

eof channelId

Return 1 if an end-of-file has occurred on channelId, 0 otherwise.

fblocked channelId

Return 1 if last read from channelId exhausted all available input.

fconfigure channelId [option [value [option value . . . ]]]

Set or get options for I/O channel channelId. Options are:

-blocking boolean

Whether I/O can block process.

-buffering full|line|none

How to buffer output.

-buffersize newSize

Size of buffer in bytes. Minimum value is 1, maximum value is 1 million.

24



Tcl Reference Guide

-encoding name

Encoding of the channel. Allows to convert to and from Unicode for use in

Tcl. Use binary as name for reading and writing binary files.

-eofchar char | {inChar outChar}

Character to serve as end-of-file marker.

-translation mode | {inMode outMode}

How to translate end-of-line markers. Modes are auto, binary, cr,

crlf, and lf.

For socket channels the following query options are supported:

-connecting

For client sockets, return 1 if an asynchronous connect is still in progress, 0

otherwise.

-error

Get the current error status as message of the socket (or empty string).

-peername

For client and accepted sockets, return a three element list with address, host

name and port to which the peer socket is connected or bound.

-sockname

For client sockets, return a three element list with address, host name and

port number for the socket.

For serial device channels the following options are supported (see open(n) manual

page for details):

-mode baud,parity,data,stop

Specifying baud rate (integer), parity (as n (none), o (odd), e (even), m

(mark), or s (space)), number of data bits (5 to 8), and number of stop bits

(1 or 2).

-handshake none|rtscts|xonxoff|dtrdsr

Type of handshake control. Type dtrdsr only available on Windows. This

option cannot be queried.

-queue

This option can only be queried. Return a list of two integers: Current

number of bytes in input and output queue.

-timeout msec

Set timeout in milliseconds for blocking read operations. On UNIX the

granularity is 100 milliseconds. This option cannot be queried.

-ttycontrol {signal boolean signal boolean . . .}

Set up the handshake output lines. This option cannot be queried.

-ttystatus

This option can only be queried. Return the current modem status and

handshake input signals as list of signal and value pairs.

-xchar {xonChar xoffChar}

The software handshake characters.

-pollinterval msec

This option is only available on Windows. The maximum time in

milliseconds between polling for fileevents. Default is 10 msec.

-sysbuffer inSize | {inSize outSize}

This option is only available on Windows. The size in bytes of Windows

system buffers for a serial channel. Default is 4096 bytes.

25



Tcl Reference Guide

-lasterror

This option is only available on Windows and can only be queried. Get a list

of error details in case read or puts have returned a file I/O error.

fcopy inchan outchan [-size size] [-command callback]

Copy data from inchan to outchan until end-of-file or size bytes have been

transferred. If -command is given, copy occurs in background and runs callback

when finished, appending number of bytes copied and an optional error message as

arguments.

fileevent channelId readable|writable [script]

Evaluate script when channel channelId becomes readable/writable. Return the

current script if script is not specified. Delete the event handler if script is an empty

string.

flush channelId

Flushes any output that has been buffered for channelId.

gets channelId [varName]

Read next line from channel channelId, discarding the end-of-line character(s). If

varName is not given, return the line read. If varName is given, place the line read

in it and return the number of characters read.

open fileName [access [permissions]]

Open a file, serial port, or command pipeline and return a channel identifier. A

command pipeline is opened if fileName starts with |, allowing to write to the

command’s input pipe or read from its output pipe. The access argument can be

specified as:

r Read only. File must exist. Default if access is not specified.

r+ Read and write. File must exist.

w Write only. Truncate if exists.

w+ Read and write. Truncate if exists.

a Write only. Create new empty file if not existing yet. Access position at end.

a+ Read and write. Create new empty file if not existing yet. Access position at

end.

All above access values may have the character b added to indicate binary reading

or writing (as if configured with fconfigure -translation binary). Alternatively the

access argument can be specified as a list of following flags, of which one must be

either RDONLY, WRONLY or RDWR:

RDONLY Read only.

WRONLY Write only.

RDWR Read and write.

APPEND Access position at end.

BINARY Binary reading or writing.

CREAT Create new empty file if not existing yet.

EXCL If CREAT is also specified, an error is returned if the file already

exists.

NOCTTY If the file is a terminal device, prevent the file from becoming the

controlling terminal of the process.

NONBLOCK Prevents the process from blocking while opening the file, and

possibly in subsequent I/O operations. Preferably fconfigure is used

to put a file in nonblocking mode.

TRUNC Truncate if file exists.

26



Tcl Reference Guide

If a new file is created, its permission are set to the conjuction of permissions

(defaulting to 0666) and the process umask.

puts [-nonewline] [channelId] string

Write string to channelId (defaulting to stdout), optionally omitting the

end-of-line character at the end.

read [-nonewline] channelId [numChars]

Read all data from channelId up to the end of the file, optionally discarding the last

character of the file if it is an end-of-line character. If numChars is specified, read

only this amount of characters (or the remaining characters if fewer are left in the

file).

seek channelId offset [origin]

Change the current access position of channelId to offset bytes (can be negative)

from origin which may be start (default), current, or end.

socket [options . . . ] host port

socket -server command [options] port

Open a client or server side network socket connection and return a channel

identifier. For a client connection port and host specify a port to connect to.

Possible options are:

-myaddr addr Set network address of client (if multiple available).

-myport port Set connection port of client.

-async Connect the client socket asynchronously.

If the -server option is specified then the new socket will be a server that listens on

the given port. A command is invoked with three arguments: the channel, the

address, and the port number.

-myaddr addr Set network address of server (if multiple available).

Socket channels can be configured with fconfigure or chan configure.

tell channelId

Return current access position in channelId as byte offset.

13. Channels

The chan command provides a unified way to read, write and manipulate channels that

have been created with the open or socket commands, or the default named channels

stdin, stdout or stderr. Several operations are also available using a mix of “old”

commands (see File Input/Output above).

Following subcommands (which may be abbreviated) are available:

chan blocked channelId

Return 1 if the last input operation on channel channelId failed because it would

have otherwise caused the process to block, 0 otherwise.

chan close channelId [r[ead]|w[rite]]

Close and destroy channel channelId. A bidirectional channel can be half-closed

by specifying the direction to only close.

chan configure channelId [option [value [option value . . . ]]]

Set or get options for channel channelId. Options are:

-blocking boolean

Whether I/O can block process.

-buffering full|line|none

How to buffer output.

-buffersize newSize

Size of buffer in bytes. Maximum value is 1 million.

27



Tcl Reference Guide

-encoding name

Encoding of the channel. Allows to convert to and from Unicode for use in

Tcl. Use the binary as name for reading and writing binary files.

-eofchar char | {inChar outChar}

Character to serve as end-of-file marker.

-translation mode | {inMode outMode}

How to translate end-of-line markers. Modes are auto, binary, cr,

crlf, and lf.

For socket channels the following query options are supported:

-connecting

For client sockets, return 1 if an asynchronous connect is still in progress, 0

otherwise.

-error

Get the current error status as message of the socket (or empty string).

-peername

For client and accepted sockets, return a three element list with address, host

name and port to which the peer socket is connected or bound.

-sockname

For client sockets, return a three element list with address, host name and

port number for the socket.

For serial device channels the following options are supported (see open(n) manual

page for details):

-mode baud,parity,data,stop

Specifying baud rate (integer), parity (as n (none), o (odd), e (even), m

(mark), or s (space)), number of data bits (5 to 8), and number of stop bits

(1 or 2).

-handshake none|rtscts|xonxoff|dtrdsr

Type of handshake control. Type dtrdsr only available on Windows. This

option cannot be queried.

-queue

This option can only be queried. Return a list of two integers: Current

number of bytes in input and output queue.

-timeout msec

Set timeout in milliseconds for blocking read operations. On UNIX the

granularity is 100 milliseconds. This option cannot be queried.

-ttycontrol {signal boolean signal boolean . . .}

Set up the handshake output lines. This option cannot be queried.

-ttystatus

This option can only be queried. Return the current modem status and

handshake input signals as list of signal and value pairs.

-xchar {xonChar xoffChar}

The software handshake characters.

-pollinterval msec

This option is only available on Windows. The maximum time in

milliseconds between polling for fileevents. Default is 10 msec.

-sysbuffer inSize | {inSize outSize}

This option is only available on Windows. The size in bytes of Windows

system buffers for a serial channel. Default is 4096 bytes.

28



Tcl Reference Guide

-lasterror

This option is only available on Windows and can only be queried. Get a list

of error details in case read or puts have returned a file I/O error.

chan copy inputChan outputChan [-size size] [-command callback]

Copy data from channel inputChan to channel outputChan until end-of-file or size

bytes have been transferred. If -command is given, copy occurs in background

and runs callback when finished, appending number of bytes copied and an

optional error message as arguments.

chan create mode cmdPrefix

Create a new script level channel using the command prefix cmdPrefix as its

handler. The argument mode must be a list containing any of the strings read or

write and specifies how the channel is opened. This channel is called a reflected

channel. See refchan(n) manual page for more details.

chan eof channelId

Return 1 if an end-of-file has occurred on channel channelId, 0 otherwise.

chan event channelId event [script]

Arrange for the Tcl script script to be installed as a file event handler to be called

whenever channel channelId enters the state described by event (which must be

either readable or writable). Specify an empty string as script to delete the

current handler. Without script returns the currently installed script.

chan flush channelId

Flushes any output that has been buffered for channel channelId.

chan gets channelId [varName]

Read next line from channel channelId, discarding the end-of-line character(s). If

varName is not given, return the line read. If varName is given, place the line read

in it and return the number of characters read.

chan names [pattern]

Return a list of all channel names, optionally only those string matching pattern.

chan pending mode channelId

Depending on whether mode is input or output, return the number of bytes of

input or output currently buffered internally for channel channelId. Return -1 if the

channel was not opened for the mode in question.

chan pipe

Create a standalone pipe whose read- and write-side channels are returned as a

2-element list (read side and write side).

chan pop channelId

Remove the topmost transformation from the channel channelId, if there is any.

Close the channel if there are no transformations added to channelId.

chan postevent channelId eventSpec

This subcommand is used by command handlers specified with chan create. It

notifies the channel represented by the handle channelId that the event(s) listed in

the eventSpec have occurred. The argument has to be a list containing any of the

strings read and write. See refchan(n) manual page for more details.

chan push channelId cmdPrefix

Add a new transformation on top of the channel channelId. The cmdPrefix

argument describes a list of one or more words which represent a handler that will

be used to implement the transformation. See transchan(n) manual page for more

details.

chan puts [-nonewline] [channelId] string

Write string to channel channelId (defaulting to stdout), optionally omitting

end-of-line character at the end.

29



Tcl Reference Guide

chan read [-nonewline] channelId [numChars]

Read all data from channelId up to the end of the file, optionally discarding last

character of the file if it is a end-of-line character. If numChars is specified, read

only this amount of characters (or the remaining characters if fewer are left in the

file).

chan seek channelId offset [origin]

Change current access position of channelId to offset bytes (can be negative) from

origin which may be start (default), current, or end.

chan tell channelId

Return current access position in channel channelId as byte offset.

chan truncate channelId [length]

Set the byte length of the underlying data stream for channelId to be length (or to

the current byte offset if length is omitted).

14. Compression/Decompression Operations

The zlib command provides access to the compression and check-summing facilities of

the Zlib library by Jean-Loup Gailly and Mark Adler.

Following subcommands are available:

zlib compress string [level]

Return the zlib-format compressed binary data of the binary string in string. If

present, level gives the compression level to use (from 0, which is uncompressed,

to 9, maximally compressed).

zlib decompress string [bufferSize]

Return the uncompressed version of the raw compressed binary data in string. If

present, bufferSize is a hint as to what size of buffer is to be used to receive the data.

zlib deflate string [level]

Return the raw compressed binary data of the binary string in string. If present,

level gives the compression level to use (from 0, which is uncompressed, to 9,

maximally compressed).

zlib gunzip string [-headerVar varName]

Return the uncompressed contents of binary string string, which must have been in

gzip format. If -headerVar is given, store a dictionary describing the contents of

the gzip header in the variable called varName. The keys of the dictionary that may

be present are:

comment The comment field from the header, if present.

crc A boolean value describing whether a CRC of the header is

computed.

filename The filename field from the header, if present.

os The operating system type code field from the header. See

RFC 1952 for the meaning of these codes.

size The size of the uncompressed data.

time The time field from the header if non-zero, expected to be time

that the file named by the filename field was modified. Suitable

for use with clock format.

type The type of the uncompressed data (binary or text) if known.

zlib gzip string [-level level] [-header dict]

Return the compressed contents of binary string string in gzip format. If -level is

given, level gives the compression level to use (from 0, which is uncompressed, to

30

https://datatracker.ietf.org/doc/html/rfc1952


Tcl Reference Guide

9, maximally compressed). If -header is given, dict is a dictionary containing

values used for the gzip header. The following keys may be defined:

comment Add the given comment to the header of the gzip-format data.

crc A boolean saying whether to compute a CRC of the header. Note

that if the data is to be interchanged with the gzip program, a

header CRC should not be computed.

filename The name of the file that the data to be compressed came from.

os The operating system type code, which should be one of the values

described in RFC 1952.

time The time that the file named in the filename key was last modified.

This will be in the same as is returned by clock seconds or

file mtime.

type The type of the data being compressed, being binary or text.

zlib inflate string [bufferSize]

Return the uncompressed version of the raw compressed binary data in string. If

present, bufferSize is a hint as to what size of buffer is to be used to receive the data.

zlib push mode channel [options . . . ]

Push a compressing or decompressing transformation onto the channel channel.

The transformation can be removed again with chan pop. The mode argument

determines what type of transformation is pushed; the following are supported:

compress A compressing transformation that produces zlib-format data on

channel, which must be writable.

decompress A decompressing transformation that reads zlib-format data from

channel, which must be readable.

deflate A compressing transformation that produces raw compressed data

on channel, which must be writable.

gunzip A decompressing transformation that reads gzip-format data from

channel, which must be readable

gzip A compressing transformation that produces gzip-format data on

channel, which must be writable

inflate A decompressing transformation that reads raw compressed data

from channel, which must be readable.

The following options may be set when creating a transformation with the zlib

push command:

-dictionary binData

Sets the compression dictionary to use when working with compressing or

decompressing the data to be binData. Not valid for gzip-format data.

-header dictionary

Passes a description of the gzip header to create, in the same format that

zlib gzip understands.

-level compressionLevel

The compression level to use (from 0, which is uncompressed, to 9,

maximally compressed).

-limit readaheadLimit

The maximum number of bytes ahead to read when decompressing. This

option has become irrelevant.

Both compressing and decompressing channel transformations add extra

configuration options that may be accessed through chan configure:

31

https://datatracker.ietf.org/doc/html/rfc1952


Tcl Reference Guide

-checksum checksum

Read-only. Gets the current checksum for the uncompressed data that the

compression engine has seen so far. Valid for both compressing and

decompressing transforms, but not for the raw inflate and deflate formats.

-dictionary binData

Read-write. Gets or sets the initial compression dictionary to use when

working with compressing or decompressing the data to be binData. Not

valid for gzip-format data.

-flush type

Write-only. Flushes the current state of the compressor to the underlying

channel. Only valid for compressing transformations. The type can be sync

for a normal flush, or full for an expensive flush.

-header dictionary

Read-only. Returns the dictionary describing the header read off the data

stream for gzip-data decompressing transforms.

-limit readaheadLimit

Read-write. Used by decompressing channels to control the maximum

number of bytes ahead to read from the underlying data source. See above

for more information.

Streaming

Create a streaming compression or decompression command, and return the name of the

command (stream in the below):

zlib stream compress [-dictionary bindata] [-level level]

The stream will be a compressing stream that produces zlib-format output, using

compression level level as integer from 0 to 9 (if specified), and the compression

dictionary bindata (if specified).

zlib stream decompress [-dictionary bindata]

The stream will be a decompressing stream that takes zlib-format input and

produces uncompressed output. If bindata is supplied, it is a compression

dictionary to use if required.

zlib stream deflate [-dictionary bindata] [-level level]

The stream will be a compressing stream that produces raw output, using

compression level level as integer from 0 to 9 (if specified), and the compression

dictionary bindata (if specified).

zlib stream gunzip

The stream will be a decompressing stream that takes gzip-format input and

produces uncompressed output.

zlib stream gzip [-header header] [-level level]

The stream will be a compressing stream that produces gzip-format output, using

compression level level as integer from 0 to 9 (if specified), and the header

descriptor dictionary header (if specified; for keys see zlib gzip).

zlib stream inflate [-dictionary bindata]

The stream will be a decompressing stream that takes raw compressed input and

produces uncompressed output. If bindata is supplied, it is a compression

dictionary to use.

Streaming compression instance commands:

stream add [option . . . ] data

A short-cut for “stream put [option . . . ] data” followed by “stream get”.

stream checksum

Return the checksum of the uncompressed data seen so far by this stream.

32



Tcl Reference Guide

stream close

Delete this stream and frees up all resources associated with it.

stream eof

Return a boolean indicating whether the end of the stream (as determined by the

compressed data itself) has been reached.

stream finalize

A short-cut for “stream put -finalize {}”.

stream flush

A short-cut for “stream put -flush {}”.

stream fullflush

A short-cut for “stream put -fullflush {}”.

stream get [count]

Return up to count bytes from stream’s internal buffers with the transformation

applied. If count is omitted, the entire contents of the buffers are returned.

stream header

Return the gzip header description dictionary extracted from the stream. Only

supported for streams created with zlib stream gunzip.

stream put [option . . . ] data

Append the contents of the binary string data to stream’s internal buffers while

applying the transformation. The following options are supported, which are used

to modify the way in which the transformation is applied:

-dictionary binData

Sets the compression dictionary to use when working with compressing or

decompressing the data to be binData.

-finalize

Mark the stream as finished, ensuring that all bytes have been wholly

compressed or decompressed. For gzip streams, this also ensures that the

footer is written to the stream.

-flush

Ensure that a decompressor consuming the bytes that the current

(compressing) stream is producing will be able to produce all the bytes that

have been compressed so far, at some performance penalty.

-fullflush

Ensure that not only can a decompressor handle all the bytes produced so far

(as with -flush above) but also that it can restart from this point if it

detects that the stream is partially corrupt. This incurs a substantial

performance penalty.

The options -finalize, -flush and -fullflush are mutually exclusive.

stream reset

Put any stream, including those that have been finalized or that have reached eof,

back into a state where it can process more data. Throws away all internally

buffered data.

Check-summing

zlib adler32 string [initValue]

Compute a checksum of binary string string using the Adler-32 algorithm. If given,

initValue is used to initialize the checksum engine.

zlib crc32 string [initValue]

Compute a checksum of binary string string using the CRC-32 algorithm. If given,

initValue is used to initialize the checksum engine

33



Tcl Reference Guide

15. Packages

The package command keeps a simple database of the packages available for use by the

current interpreter and how to load them into the interpreter. Typically, only the

package require and package provide commands are invoked in normal Tcl scripts; the

other commands are used primarily by system scripts that maintain the package database.

Following subcommands are available:

package forget package

Remove all information about package from interpreter.

package ifneeded package version [script]

Tell interpreter that package with version is available if needed, and that the

package can be added to the interpreter by executing script. Return the current

script if script is not provided, or an empty string.

package names

Return a list of all packages in the interpreter that are currently provided or have an

package ifneeded script available.

package prefer [latest|stable]

Return or set the package require selection logic mode.

package present [-exact] package [requirement]

Equivalent to package require, but does not try and load package if not already

loaded.

package provide package [version]

Tell interpreter that package version is now provided. Without version, the

currently provided version of package is returned, or an empty string.

package require package [requirement . . . ]

Tell interpreter that a suitable package must be provided. A suitable package must

satisfy at least one of the requirements as per package vsatisfies rules. The

version number of the package loaded is returned.

package require [-exact] package version

Tell interpreter that package with the exact version must be provided.

package unknown [command]

Specify a “last resort” Tcl command to invoke during package require if no

suitable version of a package can be found. The command will get the desired

package name and requirements appended. Return the current command if

command is not provided, or an empty string.

package vcompare version1 version2

Return -1 if version1 is earlier than version2, 0 if equal, and 1 if later.

package versions package

Return a list of all version numbers of package with a package ifneeded script.

package vsatisfies version requirement . . .

Return 1 if version satisfies at least one of requirements, 0 otherwise.

Requirements are in any of the following forms (where min and max are valid

version numbers; version must be greater than or equal to min):

min Min-bounded (must be less than next major version).

min- Min-unbound.

min-max Bounded (must be less than max).

::pkg::create -name pkgName -version pkgVersion [-load filespec] . . . [-source filespec] . . .

Provided through Tcl library. Construct an appropriate package ifneeded

command for a given package specification. At least one -load or -source

parameter must be given.

34



Tcl Reference Guide

pkg_mkIndex [-direct] [-lazy] [-load pkgPat] [-verbose] [--] dir [pattern . . . ]

Provided through Tcl library. Create index files that allow packages to be loaded

automatically when package require commands are executed. See

pkg_mkIndex(n) manual page for more information.

Package version numbers consist of one or more decimal numbers separated by dots, such

as 2 or 1.162 or 3.1.13.1. The first number is called the major version number. Larger

numbers correspond to later versions of a package. In addition, the letters “a” (alpha)

and/or “b” (beta) may appear exactly once to replace a dot for separation. These letters

semantically add a negative specifier into the version, where “a” is -2, and “b” is -1. A

version number not containing the letters “a” or “b” as specified above is called a stable

version, whereas presence of the letters causes the version to be called is unstable.

16. Namespaces

The namespace command allows creating, accessing and destroying separate contexts

for commands and variables. Commands and variables of different namespaces will not

interfere with each other. Tcl always has one “global namespace” (with the empty string

as name). Namespaces can nest hierarchically, and commands and variables inside can be

referred to directly with qualified names, using “::” as hierarchical separator (e.g.

::namesp1::namesp2::cmd or $::namesp1::namesp2::var). Namespaces

are created with the namespace eval subcommand.

Following subcommands (which may be abbreviated) are available:

namespace children [namespace] [pattern]

Return a list of child namespaces belonging to namespace (defaults to current)

which match pattern (default *).

namespace code script

Return a new script string which when evaluated arranges for script to be evaluated

in current namespace. Useful for callbacks.

namespace current

Return a fully-qualified name of current namespace.

namespace delete [namespace . . . ]

Each given namespace is deleted along with their child namespaces, procedures,

and variables.

namespace ensemble subcommand [arg . . . ]

Creates and manipulates a command that is formed out of an ensemble of

subcommands. The following subcommands are defined:

namespace ensemble create [option value . . . ]

Create a new ensemble command linked to the current namespace and return

the fully-qualified name of it.

namespace ensemble configure command [option] [value . . . ]

Retrieve option values or update options associated with the given ensemble

command.

namespace ensemble exists command

Return 1 if the given command exists and is an ensemble command, 0

otherwise.

The following options are supported by the namespace ensemble subcommands:

-command name

A write-only option allowing the name of the ensemble created by

namespace ensemble create to be anything in any namespace. Default is

the fully-qualified name of the namespace in which namespace ensemble

create is invoked.

35



Tcl Reference Guide

-map [dict]

With dict, supply a dictionary that provides a mapping from subcommand

names to a list of prefix words to substitute in place of the ensemble

command and subcommand words. Without dict, the mapping will be from

the local name of the subcommand to its fully-qualified name.

-namespace

A read-only option to namespace ensemble configure allowing the

retrieval of the fully-qualified name of the namespace which the ensemble

was created within.

-parameters [arg_list]

Provide a list of named arguments that are passed by the caller of the

ensemble between the name of the ensemble and the subcommand

argument. An empty list by default.

-prefixes [boolean]

Control whether the ensemble command recognizes unambiguous prefixes

of its subcommands (default). When turned off, the ensemble command

requires exact matching of subcommand names.

-subcommands [subcommand_list]

With subcommands, the option lists exactly what subcommands are in the

ensemble. Without subcommands, the subcommands of the namespace will

either be the keys of the dictionary listed in the -map option or the exported

commands of the linked namespace.

-unknown [partial_command]

With partial_command, provide a partial command to handle the case where

an ensemble subcommand is not recognized and would otherwise generate

an error. Without partial_command, an error is generated whenever the

ensemble is unable to determine how to implement a particular subcommand

(default).

namespace eval namespace arg [arg . . . ]

Activates namespace and evaluates concatenation of args’s inside it.

namespace exists namespace

Return 1 if namespace is valid in the current context, 0 otherwise.

namespace export [-clear] [pattern . . . ]

Add all commands that match the given glob-style pattern’s to the export list of the

current namespace. If -clear is given, the export list is first emptied. Without

arguments, return the namespace’s current export list.

namespace forget [[namespace::]pattern . . . ]

Remove previously imported commands from a namespace that match glob-style

pattern. Each pattern can be prefixed by a qualified namespace name (e.g.

a::b::p*).

namespace import [-force] [namespace::pattern . . . ]

Import commands that match the given glob-style pattern’s from an exporting

namespace. The -force option allows replacing of existing commands. Without

arguments, return a list of commands in the current namespace that have been

imported from other namespaces (without namespace qualifiers).

namespace inscope namespace script [arg . . . ]

Execute script in the context of the specified namespace. Not expected to be used

directly by programmers, and much like the namespace eval command except

that namespace must already exist.

namespace origin command

Return a fully-qualified name of imported command.

36



Tcl Reference Guide

namespace parent [namespace]

Return a fully-qualified name of parent namespace of namespace (defaulting to the

current namespace).

namespace path [namespaceList]

Return or set the command resolution path of the current namespace.

namespace qualifiers string

Return any leading namespace qualifiers in string.

namespace tail string

Return the simple name at the end of string (strips namespace qualifiers).

namespace upvar namespace [otherVar myVar . . . ]

Arrange for zero or more local variables in the current procedure to refer to

variables in namespace.

namespace unknown [script]

Set or return the unknown command handler for the current namespace.

namespace which [-command|-variable] name

Return the fully-qualified name of the command (or the variable, if -variable is

given) name in the current namespace. Will look in the global namespace if not

found in the current namespace.

variable [name value . . . ] name [value]

Create one or more variables in the current namespace (if name is unqualified),

optionally initialized to the given values. Inside a procedure, a local variable is

created linked to the specified namespace variable.

17. Multiple Interpreters

The interp command is used to create, delete, and manipulate child interpreters, and to

share or transfer channels between interpreters. Different interpreters are independent

from each other and have their own name spaces. A qualified interpreter name is a proper

Tcl list containing a subset of its ancestors in the interpreter hierarchy. For example, if

“a” is a child of the current interpreter and it has a child “a1”, which in turn has a child

“a11”, the qualified name of “a11” in “a” is the list “a1 a11”. The current interpreter can

always be referred to as “{}” (empty list or string). In the below qualified interpreter

names are referred to as paths.

Following subcommands are available:

interp alias srcPath srcToken

Return a list whose elements are the targetCmd and args associated with the alias

srcToken in interpreter srcPath.

interp alias srcPath srcToken {}

Delete the alias srcToken in interpreter srcPath.

interp alias srcPath srcCmd targetPath targetCmd [arg . . . ]

Create an alias srcCmd in interpreter srcPath which when invoked will run

targetCmd and args in the interpreter targetPath.

interp aliases [path]

Return a list of all aliases defined in interpreter path.

interp bgerror path [cmdPrefix]

Get or set the current background error handler for interpreter path.

interp cancel [-unwind] [--] [path] [result]

Cancel the script being evaluated in interpreter path. With the -unwind option the

evaluation stack for the interpreter is unwound without regard to any intervening

37



Tcl Reference Guide

catch command until there are no further invocations of the interpreter left on the

call stack. If result is present, it will be used as the error message string.

interp children [path]

A synonym fo interp slaves.

interp create [-safe] [--] [path]

Create a slave interpreter identified by path and a new command child command.

The name of the child command is the last component of path. Without path, a

unique name “interpx” is created, where x is an integer. An interpreter with limited

functionality can be created with the -safe option (see safe interpreters below).

The result of the command is the name of the new interpreter.

interp debug path [-frame [bool]]

Control whether to capture frame-level stack information in slave interpreter path.

without arguments, return option and current setting. If -frame is given, the

debug setting is set to the given boolean if provided and the current setting is

returned.

interp delete [path . . . ]

Delete the interpreter(s) path and all its child interpreters.

interp eval path arg [arg . . . ]

Evalute concatenation of args as command in interpreter path. Return the

evaluation result to the invoking interpreter.

interp exists [path]

Return 1 if interpreter path exists, 0 otherwise.

interp expose path hiddenName [exposedCmdName]

Make hidden command hiddenName in interpreter path exposed (optionally as

exposedCmd).

interp hide path exposedCmdName [hiddenCmdName]

Make exposed command exposedCmdName in interpreter path hidden (optionally

as hiddenCmdName).

interp hidden path

Return a list of hidden commands in interpreter path.

interp invokehidden path [option . . . ] [--] hiddenCmdName [arg . . . ]

Invoke hidden command hiddenCmdName with specified args in interpreter path.

Supported options are:

-global Invoke at global level.

-namespace nsName Invoke in namespace nsName.

interp issafe [path]

Return 1 if interpreter path is safe (see safe interpreters below), 0 otherwise.

interp limit path limitType [option] [value . . . ]

Set up, manipulate and query the configuration of resource limit limitType for

interpreter path. Possible limitTypes are commands and time. When a limit is

exceeded, an error is generated after any handler callbacks defined by parent

interpreters are called. Supported limit options are:

-command [script]

For all limit types, specify (or query) a Tcl script (command) to be executed

in the global namespace of the interpreter reading and writing the option

when the particular limit in the limited interpreter is exceeded.

-granularity [integer]

For all limit types, specify (or query) an integer divisor, which must be at

least 1 and which indicates how frequently the limit is to be checked.

38



Tcl Reference Guide

-milliseconds [ms]

Specify (or query) the number of milliseconds after the moment defined in

the -seconds option that the time limit will fire.

-seconds [s]

Specify (or query) the number of seconds after the epoch (see

clock seconds) that the time limit for the interpreter will be triggered. An

empty string can be specified to indicate that a time limit is not set for the

interpreter.

-value [nr]

Specify (or query) the number of commands that the interpreter may execute

before triggering the command limit. An empty string can be specified to

indicate that a command limit is not set for the interpreter.

interp marktrusted [path]

Mark interpreter path as trusted. Any hidden commands will not be exposed.

interp recursionlimit path [newLimit]

Return or set the maximum allowable nesting depth for interpreter path.

interp share srcPath channelId destPath

Arrange for I/O channel channelId in interpreter srcPath to be shared with

interpreter destPath. Both interpreters must close it to close the underlying IO

channel.

interp slaves [path]

Return a list of names of all slave interpreters of interpreter path.

interp target path alias

Return a list describing the target interpreter of alias in interpreter path.

interp transfer srcPath channelId destPath

Move I/O channel channelId from interpreter srcPath to destPath.

Child Commands

For each child interpreter created with the interp command, a new Tcl command is

created in the parent interpreter with the same name as the new interpreter. This

command may be used to invoke various operations on the interpreter. Following child

commands are available (see above for explanations):

child alias srcToken

child alias srcToken {}

child alias srcCmd targetCmd [arg . . . ]

child aliases

child bgerror [cmdPrefix]

child eval arg [arg . . . ]

child expose hiddenName [exposedCmdName]

child hide exposedCmdName [hiddenCmdName]

child hidden

child invokehidden [option . . . ] [--] hiddenCmdName [arg . . . ]

child issafe

child limit limitType [option] [value . . . ]

child marktrusted

child recursionlimit [newLimit]

39



Tcl Reference Guide

Safe Interpreters

A safe interpreter is one with restricted functionality, so that it is safe to execute an

arbitrary script without damaging the enclosing application or computing environment.

Certain commands and variables are removed from the safe interpreter. Limited access to

these facilities can be provided, by creating aliases to the parent interpreter and restricting

capabilities here.

A safe interpreter is created with exactly the following set of built-in commands:

after error info lsort split
append eval interp namespace string
apply expr join package subst
array fblocked lappend pid switch
binary fcopy lassign proc tell
break fileevent lindex puts time
catch flush linsert read trace
chan for list regexp unset
clock foreach llength regsub update
close format lrange rename uplevel
concat gets lrepeat return upvar
continue global lreplace scan variable
dict if lsearch seek vwait
eof incr lset set while

The following commands are hidden within a safe interpreter, and can be recreated later

as Tcl procedures or aliases, or re-exposed with interp expose:

cd exit glob pwd source
encoding fconfigure load socket unload
exec file open

Safe Tcl

Safe Tcl is a mechanism for executing untrusted Tcl scripts safely and for providing

mediated access by such scripts to potentially dangerous functionality. Safe Tcl allows a

parent interpreter to create safe, restricted interpreters that contain a set of predefined

aliases for the source, load, file, encoding, and exit commands and are able to use the

auto-loading and package mechanisms. No knowledge of the file system structure is

leaked to the safe interpreter, because it has access only to a virtualized path containing

tokens. All commands provided in the parent interpreter by Safe Tcl reside in the safe

namespace. See the safe(n) manual page for more information.

The following commands are available:

::safe::interpCreate [child] [options . . . ]

Create a safe interpreter, install the predefined aliases (see below) and initialize the

auto-loading and package mechanism as specified by the supplied options (see

below). A name will be generated if child is not specified. Returns the interpreter

name.

::safe::interpInit child [options . . . ]

Like ::safe::interpCreate, except that child must have been created before (e.g.

with interp create -safe).

::safe::interpConfigure child [options . . . ]

Without options, return a list with the settings for all options of the named safe

interpreter child. With a single argument, return a 2 element list with the full name

of the specified option and its value for child. With more than two arguments,

reconfigure the the safe interpreter child as per specified options (see below).

::safe::interpDelete child

Deletes the safe interpreter and cleans up the corresponding parent interpreter data

structures. If a deleteHook script (see below was specified for this interpreter it is

40



Tcl Reference Guide

evaluated before the interpreter is deleted, with the name of the interpreter as an

additional argument.

::safe::interpAddToAccessPath child directory

Add directory the virtual path maintained for the safe interpreter in the parent, and

returns the token that can be used in the safe interpreter to obtain access to files in

that directory. If the directory is already in the virtual path, it only returns the token

without adding the directory to the virtual path again.

::safe::interpFindInAccessPath child directory

Find and return the token for the real directory directory in the safe interpreter’s

current virtual access path. It generates an error if the directory is not found.

::safe::setLogCmd [cmd arg . . . ]

Install a script that will be called when interesting life cycle events occur for a safe

interpreter. Without cmd, return the currently installed script. With cmd being an

empty string and only argument, the currently installed script is removed and

logging is turned off. The script will be invoked with one additional argument, a

string describing the event of interest.

The following options are common to the above ::safe::interpCreate, ::safe::interpInit,

and ::safe::interpConfigure commands and can be abbreviated as long as non-ambiguous:

-accessPath directoryList

Set the list of directories from which the safe interpreter can source and load files.

Default is to use the same directories as the parent for auto-loading.

-statics boolean

Specify if the safe interpreter will be allowed to load statically linked packages.

Default is true.

-noStatics

A shortcut for -statics false.

-nested boolean

Specify if the safe interpreter will be allowed to load packages into its own

sub-interpreters. Default is false.

-nestedLoadOk

A shortcut for -nested true.

-deleteHook script

The specified script will be evaluated in the parent with the name of the safe

interpreter as an additional argument just before deleting the safe interpreter.

Specifying an empty value will remove any currently installed deletion hook script.

Default is not to have any deletion call back.

The following aliases are provided in a safe interpreter:

source fileName

Files can only be sourced from directories in the virtual path for the safe interpreter

and requires the use of a token name.

load fileName

Shared object files can only be loaded from directories in the virtual path for the

safe interpreter and requires the use of a token name.

file [subCmd args . . . ]

Only the following subcommands are available: dirname, join, extension, root,

tail, pathname and split.

encoding [subCmd args . . . ]

Setting the system encoding is disallowed.

exit The calling interpreter is deleted and its computation is stopped, but the Tcl

process in which this interpreter exists is not terminated.

41



Tcl Reference Guide

18. Coroutines

Commands to create and produce values from coroutines. See the coroutine(n) manual

page for more information and examples.

coroutine name command [arg. . . ]

Create a new coroutine context (with associated command) named name and

executes that context by calling command, passing in the other remaining

arguments without further interpretation. Once command returns normally or with

an exception (e.g., an error) the coroutine context name is deleted.

yield [value]

Within the context, values may be generated as results by using the yield

command; if no value is supplied, the empty string is used. The context will

suspend execution and the coroutine command will return the argument to yield.

yieldto command [arg. . . ]

The coroutine may also suspend its execution by use of the yieldto command,

which instead of returning, cedes execution to some command called command

(resolved in the context of the coroutine) and to which any number of arguments

may be passed.

name [value. . . ]

The coroutine that can be executed.

19. HTTP/1.1 Protocol

See the http(n) manual page for more information on following commands providing the

client side of the HTTP/1.1 protocol:

package require http [2.9]

::http::config [-option value . . . ]

::http::geturl url [-option value . . . ]

::http::formatQuery key value [key value . . . ]

::http::quoteString value

::http::reset token [why]

::http::wait token

::http::status token

::http::size token

::http::code token

::http::ncode token

::http::meta token

::http::data token

::http::error token

::http::cleanup token

::http::register proto port command

::http::registerError port [message]

::http::unregister proto

20. Object Oriented Tcl

See following manual pages for more information on object oriented extensions to Tcl:

my(n) Invoke any method of current object.

next(n) Invoke superclass method implementations.

42



Tcl Reference Guide

nextto(n) Invoke superclass method implementations.

oo::class(n) Class of all classes.

oo::copy(n) Create copies of objects and classes.

oo::define(n) Define and configure classes and objects.

oo::objdefine(n) Define and configure classes and objects.

oo::object(n) Root class of the class hierarchy.

self(n) Method call internal introspection.

21. Other Tcl Commands

A variety of commands not fitting into the categories covered by the previous chapters.

after ms [script script script . . . ]

Arrange for command (concat of script arguments) to be run after ms milliseconds

have passed. Without script arguments, the program will sleep for ms milliseconds.

With the script arguments, returns an identifier that can be used to cancel the

delayed command using after cancel.

after cancel id|script script . . .

Cancels the execution of a delayed command that was previously scheduled. Either

by specifying the id returned from a previous after command, or by specifying the

name of a pending command specified to a previous after command.

after idle script [script script . . . ]

Arrange for command (concat of script) to be evaluated later as an idle callback.

The script will be run exactly once, the next time the (Tk) event loop is entered and

there are no events to process. Returns an identifier that can be used to cancel the

delayed command using after cancel.

after info [id]

Return information on event handler id. Without id, return a list of all existing

event handler ids.

apply func [arg . . . ]

Apply function funct to the given arguments and return the result.

auto_execok cmd

Provided through Tcl library. Return a list of arguments to be passed to exec if an

executable file or shell builtin by the name cmd exists in user’s PATH, empty string

otherwise.

auto_import pattern

Provided through Tcl library. Invoked during namespace import to see if

imported commands specified by pattern reside in an autoloaded library.

auto_load cmd

Provided through Tcl library. Attempts to load the definition for cmd by searching

the variable $auto_path or $env(TCLLIBPATH) for a tclIndex file,

which will inform the interpreter where it can find cmd’s definition. Returns 1 if

cmd was successfully created, 0 otherwise.

auto_mkindex dir [pattern . . . ]

Provided through Tcl library. Generate a tclIndex file from all files in dir that

match glob patterns (defaulting to *.tcl).

auto_qualify command namespace

Provided through Tcl library. Compute a list of fully qualified names for command.

auto_reset

Provided through Tcl library. Destroy cached information used by auto_execok

and auto_load.

43



Tcl Reference Guide

catch script [resultVarName] [optionsVarName]

Evaluate script without raising errors and optionally store results into

resultVarName. Optionally store a directory of return options into

optionsVarName. If there is an error, a non-zero error code is returned and an error

message stored in resultVarName.

dde subcommand args

Execute a Dynamic Data Exchange (DDE) command when running under

Microsoft Windows. See dde(n) manual page for more details.

error message [info] [code]

Interrupt command interpretation with an error described in message. The

-errorinfo and -errorcode return options can be set to info and code.

eval arg [arg . . . ]

Return the result of evaluating the concatenation of args’s as a Tcl command.

expr arg [arg . . . ]

Return the result of evaluating the concatenation of arg’s as an operator expression.

See Operators and Expressions for more info.

global varName [varName . . . ]

Declares given varName’s as global variables within a proc body.

history subcommand [arg . . . ]

Manipulate the command history list. See history(n) manual page for more details.

incr varName [increment]

Increment the integer value stored in varName by increment (default 1). If

varName is unset, set it to increment or to 1 by default.

load [-global] [-lazy] [--] fileName [prefix [interp]]

Load binary code from a file fileName into the application’s address space and call

an initialization procedure in the library to incorporate it into an interpreter. If

specified, prefix is used to compute the name of an initialization procedure, and

interp can be specified as path name of the interpreter into which to load the

library. With -global, all symbols found in the shared library are exported for

global use by other libraries. With -lazy, the actual loading of symbols is

delayed until their first actual use.

memory command [arg . . . ]

Control Tcl memory debugging capabilities. Only available when Tcl has been

compiled with memory debugging enabled. See memory(n) manual page for more

details.

::msgcat::command [arg . . . ]

The msgcat package provides a set of functions that can be used to manage

multi-lingual user interfaces using an application independent “message catalog”.

See msgcat(n) manual page for more details.

platform::command [arg]

The platform package provides several utility commands useful for the

identification of the architecture of a machine running Tcl. Commands available

are: generic, identify, and patterns. See platform(n) manual page for more

details.

platform::shell::command shell

The platform:shell package provides several utility commands useful for the

identification of the architecture of a specific Tcl shell. Commands available are:

generic, identify, and platform. See platform::shell(n) manual page for more

details.

proc name args body

Create a new Tcl procedure (or replace existing one) called name where args is a

44



Tcl Reference Guide

list of arguments and body Tcl commands to evaluate when invoked. Args can be

an empty list (no arguments) or a list of 2-element lists. This 2-element list

specifies the argument name and its default value. A local variable is created for

each of the formal arguments to the procedure; its value will be the value of

corresponding argument in the invoking command or the argument’s default value.

If the last argument has the name args, then this will be a list containing the

values of any remaining arguments when invoked. Examples:
proc mult {varName {multiplier 2}} {

upvar 1 $varName var
set var [expr {$var * $multiplier}]

}
proc printArguments args {

foreach arg $args {
puts $arg

}
}

registry [-mode] command keyName arg . . .

Manipulate the Microsoft Windows registry. See registry(n) manual page for more

details.

rename oldName newName

Rename command oldName so it is now called newName. If newName is the

empty string, command oldName is deleted.

set varName [value]

Store value in varName if given. Returns the current value of varName. VarName

can specify a an array element.

source [-encoding encoding] fileName

Read file fileName and evaluate its contents as a Tcl script. The encoding of

fileName can be specified. The return value from source is the return value of the

last command executed in the script. If a return is invoked from within the script

then the remainder of the file will be skipped and the source command will return

normally with the result from the return command.

tailcall command [arg . . . ]

Replace the current procedure with another command. This is equivalent to:

return [uplevel 1 [list command arg . . .]]

tcl_findLibrary basename version patch initScript enVarName varName

Provided through Tcl library. A standard search procedure for use by extensions

during their initialization.

tcltest::command arg . . .

The tcltest package provides several utility commands useful in the construction

of test suites for code instrumented to be run by evaluation of Tcl commands. See

tcltest(n) manual page for more details.

::tcl::tm::command arg . . .

Facilities for locating and loading of Tcl Modules. See tm(n) manual page for

more details.

throw type message

This command causes the current evaluation to be unwound with an error. The

error created is described by the type and message arguments: type must contain a

list of words describing the error in a form that is machine-readable (and which

will form the error-code part of the result dictionary), and message should contain

text that is intended for display to a human being.

time script [count]

Call interpreter count (default 1) times to evaluate script. Returns a string of the

form “503.2 microseconds per iteration”. Time is measured in

elapsed time, not CPU time.

45



Tcl Reference Guide

timerate [options args] script [time] [max-count]

Calibrated performance measurements of script execution time. See timerate(n)

manual page for more details.

trace add|remove|info type name [ops commandPrefix [arg . . . ]]

Add, remove or provide information on monitoring of operations specified with

type (and further arguments): command for command renaming or deletion,

execution for command execution, and variable for variable access. See

trace(n) manual page for more details.

try body [handler . . . ] [finally script]

Trap and process errors and exceptions. Execute the script body and, depending on

what the outcome of that script is (normal exit, error, or some other exceptional

result), runs a handler script to deal with the case. Once that has all happened, if

the finally clause is present, the script it includes will be run and the result of the

handler (or the body if no handler matched) is allowed to continue to propagate.

The handler clauses are each expressed as several words, and must have one of the

following forms:

on code variableList script

Matches if the evaluation of body completed with the exception code code.

Code can be ok, error, return, break, or continue (or the

equivalent integers 0 through 4).

trap pattern variableList script

Matches if the evaluation of body resulted in an error and the prefix of the

-errorcode from the interpreter’s status dictionary is equal to the pattern.

If variableList is non-empty, the first variable name will contain the result of the

evaluation of body. Any second variable name will contain the options dictionary

of the interpreter at the moment of completion of execution of body.

Script of each handler is a Tcl script to evaluate if the clause is matched. If script is

a literal “-” and the handler is not the last one, the script of the following handler

is invoked instead (as with the switch command).

unknown cmdName [arg . . . ]

Called when the Tcl interpreter encounters an undefined command name.

unload [-nocomplain] [-keeplibrary] [--] file [pkgName [interp]]

Try to unload shared libraries previously loaded with load.

unset [-nocomplain] [--] name [name . . . ]

Removes the given variables, arrays and array elements from scope. Possible errors

can be suppressed with -nocomplain.

update [idletasks]

Handle pending (Tk) events. If idletasks is specified, only those operations

normally deferred until the idle state are processed.

uplevel [level] arg [arg . . . ]

Evaluates concatenation of arg’s in the variable context indicated by level, an

integer (defaulting to 1) that gives the distance up the calling stack. If level is

preceded by “#”, then it gives the distance down the calling stack from the global

level.

upvar [level] otherVar myVar [otherVar myVar . . . ]

Makes myVar in local scope equivalent to otherVar at context level (see uplevel) so

they share the same storage space.

vwait varName

Enter Tcl event loop until global variable varName is modified.

46



Tcl Reference Guide

22. Pattern Globbing

Several Tcl commands support file name or argument pattern matching by “globbing” in

a fashion similar to the csh shell or bash shell. Following “globbing” patterns are

supported:

? Match any single character.

* Match zero or more characters.

[chars] Match set of characters.

[a-z] Match range of characters.

\x Match character x.

{a,b,. . .} Match any of strings a, b, etc.

∼ Home directory (for glob command).

∼user Match user’s home directory (for glob command).

Note: For the glob command, a “.” at the beginning of a file’s name or just after “/” and

all “/” characters must be matched explicitly.

See glob(n) manual page for more details.

23. Regular Expressions

An advanced regular expression (“ARE”) is one or more branches, separated by “|”,

matching anything that matches any of the branches. A branch is zero or more constraints

or quantified atoms, concatenated. It matches a match for the first, followed by a match

for the second, etc; an empty branch matches the empty string.

See re_syntax(n) manual page for more details.

Quantifiers

A quantified atom is an atom possibly followed by a single quantifier. Without a

quantifier, it matches a single match for the atom.

re* Match zero or more of re.

re+ Match one or more of re.

re? Match zero or one of re.

re{m} Match re exactly m times.

re{m,} Match re at least m times.

re{m,n} Match re at least m and at most n times.

*? +? ?? {m}? {m,}? {m,n}?

“Non-greedy” quantifiers, preferring the smallest instead of the largest

number of matches.

Atoms

(re) Matches a match for regexp with the match noted for possible reporting.

(?:re) As previous, but does no reporting.

() Matches an empty string, noted for possible reporting.

(?:) Matches an empty string, without reporting.

[chars] A bracket expression, matching any one of the chars (see below).

. Any single character except newline.

\k Match non-alphanumeric character k taken as an ordinary character, e.g. \\

matches a backslash character.

\c Where c is alphanumeric, an escape (see below).

47



Tcl Reference Guide

{ When followed by a character other than a digit, matches the left-brace

character “{”; when followed by a digit, it is the beginning of a bound

quantifier (see above).

x Where x is a single character with no other significance, matches that

character.

Constraints

A constraint matches an empty string when specific conditions are met. A constraint may

not be followed by a quantifier.

∧ Match at the beginning of a line.

$ Match at the end of a line.

(?=re) Positive lookahead, matches at any point where a substring matching re

begins.

(?!re) Negative lookahead, matches at any point where no substring matching re

begins.

Bracket Expressions

[chars] Match characters in set.

[∧chars] Match characters not in set.

[a-z] Match range of characters.

[∧a-z] Match characters not in range.

Character Classes

Within a bracket expression, the name of a character class enclosed in [: and :] stands

for the list of all characters (not all collating elements!) belonging to that class.

alpha A letter.

upper An upper-case letter.

lower A lower-case letter.

digit A decimal digit.

xdigit A hexadecimal digit.

alnum An alphanumeric (letter or digit).

print A “printable” (same as graph, except also including space).

blank A space or tab character.

space A character producing white space in displayed text.

punct A punctuation character.

graph A character with a visible representation (includes both alnum and

punct).

cntrl A control character.

Collating Elements

Within a bracket expression, a collating element (a character, a multi-character sequence

that collates as if it were a single character, or a collating-sequence name for either)

enclosed in [. and .] stands for the sequence of characters of that collating element. For

example, the RE “[[.ch.]]*c” (zero or more “chs” followed by “c”) matches the first

five characters of “chchcc”.

Escapes

Escapes , which begin with a \ followed by an alphanumeric character, come in several

varieties: character entry, class shorthands, constraint escapes, and back references.

48



Tcl Reference Guide

Character-entry Escapes

\a Alert (bell) character.

\b Backspace.

\B Synonym for \ to help reduce backslash doubling.

\cX (where X is any character) the character whose low-order 5 bits are the

same as those of X, and whose other bits are all zero (a control character).

\e Escape character (the character with octal value 033).

\f Formfeed.

\n Newline.

\r Carriage return.

\t Horizontal tab.

\uhhhh Where hhhh is one up to four hexadecimal digits, the Unicode character

U+hhhh in the local byte ordering.

\Uhhhhhhhh Where hhhhhhhh is one up to eight hexadecimal digits, reserved for a

Unicode extension up to 21 bits. The digits are parsed until the first

non-hexadecimal character is encountered, the maximun of eight

hexadecimal digits are reached, or an overflow would occur in the

maximum value of U+10ffff.

\v Vertical tab.

\xhh Where hh is one or two hexadecimal digits, the character whose

hexadecimal value is 0xhh.

\0 The character whose value is 0.

\xyz Where xyz is exactly three octal digits, and is not a back reference, the

character whose octal value is 0xyz. The first digit must be in the range 0-3,

otherwise the two-digit form is assumed.

\xy Where xy is exactly two octal digits, and is not a back reference, the

character whose octal value is 0xy.

Hexadecimal digits are “0-9”, “a-f”, and “A-F”. Octal digits are “0-7”.

Class-shorthand Escapes

\d \D [[:digit:]] and [∧[:digit:]].

\s \S [[:space:]] and [∧[:space:]].

\w \W [[:alnum:]_] and [∧[:alnum:]_] (note underscore).

Constraint Escapes

\A Matches only at the beginning of the string.

\m Matches only at the beginning of a word.

\M Matches only at the end of a word.

\y Matches only at the beginning or end of a word.

\Y Matches only at a point that is not the beginning or end of a word.

\Z Matches only at the end of the string.

\m Where m is a nonzero digit, a back reference (see below).

\mnn Where m is a nonzero digit and nn is some more digits, and the decimal

value mnn is not greater than the number of closing capturing parentheses

seen so far, a back reference (see below).

A word is defined as a sequence of word characters that is neither preceded nor followed

by word characters. A word character is an alnum character or an underscore (“_”).

49



Tcl Reference Guide

Back References

A back reference matches the same string matched by the parenthesized subexpression

specified by the number, so that (e.g.) “([bc])\1” matches “bb” or “cc” but not “bc”.

The subexpression must entirely precede the back reference in the RE. Subexpressions

are numbered in the order of their leading parentheses.

50



Tcl Reference Guide

Command Index

after, 43

append, 8

apply, 43

array, 16

auto execok, 43

auto import, 43

auto load, 43

auto mkindex, 43

auto qualify, 43

auto reset, 43

binary, 8

break, 4

catch, 44

cd, 19

chan, 27

clock, 19

close, 24

concat, 14

continue, 4

coroutine, 42

dde, 44

dict, 17

encoding, 9

eof, 24

error, 44

eval, 44

exec, 21

exit, 4

expr, 44

fblocked, 24

fconfigure, 24

fcopy, 26

file, 22

fileevent, 26

flush, 26

for, 4

foreach, 4

format, 9

gets, 26

glob, 21

global, 44

history, 44

http, 42

if, 4

incr, 44

info, 5

info class, 7

info object, 7

interp, 37

join, 14

lappend, 14

lassign, 14

lindex, 14

linsert, 14

list, 14

llength, 14

lmap, 15

load, 44

lrange, 15

lrepeat, 15

lreplace, 15

lreverse, 15

lsearch, 15

lset, 16

lsort, 16

memory, 44

msgcat, 44

my, 42

namespace, 35

next, 42

nextto, 43

oo::class, 43

oo::copy, 43

oo::define, 43

oo::objdefine, 43

oo::object, 43

open, 26

package, 34

parray, 17

pid, 22

pkg::create, 34

pkg mkIndex, 35

platform, 44

platform::shell, 44

proc, 44

puts, 27

pwd, 22

read, 27

regexp, 10

registry, 45

regsub, 10

rename, 45

return, 5

safe, 40

scan, 11

seek, 27

self, 43

set, 45

socket, 27

source, 45

split, 16

string, 11

subst, 13

switch, 5

tailcall, 45

tcl::prefix, 14

tcltest, 45

tcl endOfWord, 13

tcl findLibrary, 45

tcl startOfNextWord, 13

tcl startOfPreviousWord,

13

tcl wordBreakAfter, 13

tcl wordBreakBefore, 13

tell, 27

throw, 45

time, 45

timerate, 46

tm, 45

trace, 46

try, 46

51



Tcl Reference Guide

unknown, 46

unload, 46

unset, 46

update, 46

uplevel, 46

upvar, 46

variable, 37

vwait, 46

while, 5

yield, 42

yieldto, 42

zlib, 30

52



Tcl Reference Guide

Notes

Tcl Reference Guide Revision 8.6.a ©1989,1997,2000,2014,2022

53


	Conventions
	Basic Tcl Language Features
	Tcl Special Variables
	Operators and Expressions
	Control Statements
	Tcl Interpreter Information
	Strings and Binary Data
	Lists
	Arrays
	Dictionaries
	System Interaction
	File Information
	File Input/Output
	Channels
	Compression/Decompression Operations
	Packages
	Namespaces
	Multiple Interpreters
	Coroutines
	HTTP/1.1 Protocol
	Object Oriented Tcl
	Other Tcl Commands
	Pattern Globbing
	Regular Expressions
	Command Index

